Central 5-HT4 Receptors: Electrophysiology

  • Rodrigo Andrade
  • Samir Haj-Dahmane
  • Esther Chapin
Part of the Biotechnology Intelligence Unit book series (BIOIU)


Serotonin receptors of the 5-HT4 subtypes are expressed at relatively high densities in several regions of the mammalian central nervous system. As such, these receptors are likely to participate in at least some of the functions served by serotonin in the brain. The challenge is to identify, at a behavioral level, those processes involving 5-HT4 receptors and to elucidate, at cellular and molecular levels, how these processes are made possible by 5-HT4 receptor activation. In this regard, the electrophysiological effects mediated by 5-HT4 receptors constitute an important middle ground. 5-HT4 receptors regulate the electrophysiological properties of individual neurons; thus in turn, the functioning of neuronal networks. It is ultimately the effect of 5-HT4 receptors on the functioning of these networks that impact behavioral and thought processes.


Adenylate Cyclase Pyramidal Cell Serotonin Receptor Mammalian Central Nervous System Hippocampal Pyramidal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azmitia EC, Segal M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 1978; 179: 641–668.PubMedCrossRefGoogle Scholar
  2. 2.
    Biscoe TJ, Straughan DW. Micro-electrophoretic studies of neurones in the cat hippocampus. J Physiol (London) 1966; 183: 341–359.Google Scholar
  3. 3.
    Segal M. The action of serotonin in the rat hippocampal slice preparation. J Physiol (London) 1980; 303: 423–439.Google Scholar
  4. 4.
    Jahnsen H. The action of 5-hydroxytryptamine on neuronal membranes and synaptic transmission in area CAi of the hippocampus in vitro. Brain Res 1980; 197: 83–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Andrade R, Malenka RC, Nicoll RA. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 1986; 234: 1261–1265.PubMedCrossRefGoogle Scholar
  6. 6.
    Beck SG, Goldfarb J. Serotonin produces a reversible concentration dependent decrease of population spikes in rat hippocampal slices. Life Sci 1985; 36: 557–563.PubMedCrossRefGoogle Scholar
  7. 7.
    Beck SG, Clarke WP, Goldfarb J. Spiperone differentiates multiple 5-hydroxytryptamine responses in rat hippocampal slices in vitro. Eur J Pharmacol 1985; 116: 195–197.PubMedCrossRefGoogle Scholar
  8. 8.
    Colino A, Halliwell JV. Differential modulation of three separate K-conductances in hippocampal CAI neurons by serotonin. Nature 1987; 328: 73–77.PubMedCrossRefGoogle Scholar
  9. 9.
    Andrade R, Nicoll RA. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol (London) 1987; 39:499–124.Google Scholar
  10. 10.
    Beck SG. 5-Carboxyamidotryptamine mimics only the 5-HT elicited hyperpolarization of hippocampal pyramidal cells via 5-HT1A receptor. Neurosci Lett 1989; 99: 101–106.PubMedCrossRefGoogle Scholar
  11. 11.
    Chaput Y, Araneda RC, Andrade R. Pharmacological and functional analysis of a novel serotonin receptor in the rat hippocampus. Eur J Pharmacol 1990; 182: 441–456.PubMedCrossRefGoogle Scholar
  12. 12.
    Dumuis A, Bouhelal R, Sebben M et al. A 5-HT receptor in the central nervous system, positively coupled with adenylate cyclase, is antagonized by ICS 205 930. Eur J Pharmacol 1988; 146: 187–188.PubMedCrossRefGoogle Scholar
  13. 13.
    Dumuis A, Bouhelal R, Sebben M et al. A nonclassical 5-Hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol Pharmacol 1988; 34: 880–887.PubMedGoogle Scholar
  14. 14.
    Dumuis A, Sebben M, Bockaert J. BRL 24924: a potent agonist at a non-classical 5-HT receptor positively coupled with adenylate cyclase in colliculi neurons. Eur J Pharmacol 1989; 162: 381–384.PubMedCrossRefGoogle Scholar
  15. 15.
    Bockaert J, Sebben M, Dumuis A. Pharmacological characterization of 5-hydroxytryptamine4 (5-HT4) receptors positively coupled to adenylate cyclase in adult guinea pig hippocampal membranes: effect of substituted benzamide derivatives. Mol Pharmacol 1990; 37: 408–411.PubMedGoogle Scholar
  16. 16.
    Dumuis A, Sebben M, Bockaert J. The gastrointestinal prokinetic benzamide derivatives are agonists at the non-classical 5-HT receptor (5-HT4) positively coupled to adenylate cyclase in neurons. Naunyn-Schmiedeberg’s Arch Pharmacol 1989; 340: 403–410.PubMedCrossRefGoogle Scholar
  17. 17.
    Andrade R, Chaput Y. 5-HT4-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus. J Pharmacol Exp Ther 1991; 257: 930–7.PubMedGoogle Scholar
  18. 18.
    Torres GE, Holt IL, Andrade R. Antagonists of 5-HT4 receptor-mediated responses in adult hippocampal neurons. J Pharmacol Exp Ther 1994; 271 (1): 255–61.PubMedGoogle Scholar
  19. 19.
    Birnstiel S, Beck SG. Modulation of the 5-hydroxytryptamine4 receptor mediated response by short-term and long-term administration of corticosterone in rat CAI hippocampal pyramidal neurons. J Pharmacol Exp Ther 1995; 273: 1132–8.PubMedGoogle Scholar
  20. 20.
    Waeber C, Sebben M, Nieoullo, A et al. Regional distribution and ontogeny of 5-HT4 binding sits in rodent brain. Neuropharmacology 1994; 33: 527–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Ullmer C, Engels P, Abdel’Al, S et al. Distribution of 5-HT4 receptor mRNA in the rat rain. Naunyn-Schmiedebergs Arch Pharmacol 1996; 354: 210–2.PubMedGoogle Scholar
  22. 22.
    Baskys A, Niesen CE, Carlen PL. Altered modulatory actions of serotonin on dentate granule cells of aged rats. Brain Res 1987; 419: 112–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Haas HL, Konnerth A. Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 1983; 302: 432PubMedCrossRefGoogle Scholar
  24. 24.
    Madison DV, Nicoll RA. Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 1982; 299 (14): 636–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Nicoll RA, Malenka RC, Kauer JA. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 1990; 70: 513–65.PubMedGoogle Scholar
  26. 26.
    Torres GE, Chaput Y, Andrade R. cAMP and PKA mediate 5-HT4 receptor regulation of calcium-activated potassium current in adult hippocampal neurons. Mol Pharmacol 1995; 47: 191–7.PubMedGoogle Scholar
  27. 27.
    Meggio F, Donella Deana A., Ruzzene M et al. Different susceptibility of protein kinases to staurosporin inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur J Biochem 1995; 234: 317–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Parker-Bothelho LH, Rothermel JD, Coombs, RV et al. CMP analog antagonists of cAMP action. Meth Enzymol 1988; 159: 159–72.CrossRefGoogle Scholar
  29. 29.
    Pedarzani P, Storm JF. PKA mediates the effects of monoamine neurotransmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron 1993; 11: 1023–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Torres GE, Arfken CL, Andrade R. 5-hydroxytryptamine4 receptors reduce afterhyperpolarization in hippocampus by inhibiting calcium-induced calcium release. Mol Pharmacol 1996; (in press).Google Scholar
  31. 31.
    Sah P, McLachlan EM. Cet-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: A role for Ca2+-activated Ca2+ release. Neuron 1991; 7: 257–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Kuba K, Morita K, Nohmi M. Origin of calcium ions involved in the generation of a slow afterhyperpolarization in bullfrog sympathetic neurones. Pflugers Archiv 1983; 399: 194–202.PubMedCrossRefGoogle Scholar
  33. 33.
    Furuichi T, Kohda K, Miyawaki A et al. Intracellular channels. Curr Opin Neurobiol 1994; 4: 294–303.PubMedCrossRefGoogle Scholar
  34. 34.
    Pape H, McCormick DA. Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarizationactivated cation current. Nature 1989; 340: 715–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Bobker DH, Williams JT. Serotonin augments the cationic current Ihin central neurons. Neuron 1989; 2:1535–1450PubMedCrossRefGoogle Scholar
  36. 36.
    Takahashi T, Berger AJ. Direct excitation of rat spinal motoneurones by serotonin. J Physiol (London) 1990; 423: 63–76.Google Scholar
  37. 37.
    Andrade R, Haj-Dahmane S, Chapin EM. On the mechanim underlying the 5-HT4 receptor-induced depolarization in rat hippocampus. [Abstract] Soc Neurosci Abstr 1997; (in press).Google Scholar
  38. 38.
    Ansanay H, Dumuis A, Sebben M et al. cAMP-dependent long lasting inhibition of a K+ current in mammalian neuronses. Proc Natl Acad Sci USA 1995; 92: 6635–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Fagni L, Dumuis A, Sebben M et al. The 5-HT4 receptor subtype inhibits K+ current in colliculi neurones via activation of a cyclic AMP-dependent protein kinase. Eur J Pharmacol 1992; 105: 973–9.Google Scholar
  40. 40.
    Patel S, Roberts J, Moorman J et al. Localization of serotonin-4 receptors in the striatonigral pathway in rat bain. Neurosci 1995; 69: 1159–67.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Rodrigo Andrade
  • Samir Haj-Dahmane
  • Esther Chapin

There are no affiliations available

Personalised recommendations