Injuries of the Pelvis and the Lower Extremities

  • Kai-Uwe Schmitt
  • Peter F. Niederer
  • Felix Walz


Improvements in belt and airbag restraint systems have resulted in signifiicant reductions in the incidence of fatalities, thoracic and head trauma in automotive frontal collisions [Crandall et al. 1996]. As a consequence, injuries of the pelvis and the lower extremities have emerged as the most frequent non-minor injury resulting from frontal crashes, often resulting in long-term impairment [Håland et al. 1998, Crandall 2001]. Particularly foot and ankle injuries have increased in relative importance in recent years [Parenteau et al. 1998].


Injury Mechanism Pelvic Fracture Pelvic Ring Tibia Plateau Fracture Pubic Rami 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AAAM (2004): AIS 2005: The injury scale (Eds. Gennarelli T and Wodzin E), Association of Advancement of Automotive MedicineGoogle Scholar
  2. Begeman P, Prasad P (1990): Human ankle impact response in dorsiflexion, Proc. 34th Stapp Car Crash Conf., pp. 39–54CrossRefGoogle Scholar
  3. Brun-Cassan F, Leung YC, Tarriere C, Fayon A, Patel A, Got C, Hureau J (1982): Determination of knee-femur-pelvis tolerance from the simulation of car frontal impacts, Proc. IRCOBI Conf., pp. 101–115Google Scholar
  4. Cappon H, van den Krooenberg A, Happee R, Wismans J (1999): An improved lower leg multibody model, Proc. IRCOBI Conf., pp. 499–509Google Scholar
  5. Cavanaugh J, Walilko T, Malhotra A, Zhu Y, King A (1990): Biomechanical response and injury tolerance of the pelvis in twelve sled side impact tests, Proc. 34th Stapp Car Crash Conf., SAE 902307Google Scholar
  6. Crandall J (2001): Crashworthiness and Biomechanics, Euromotor Course, June 11–13, Göteborg, SwedenGoogle Scholar
  7. Crandall J, Portier L, Petit P, Hall Bass C, Klopp G, Hurwitz S, Pilkey W, Trosseille X, Tarriere C, Lassau J (1996): Biomechanical response and physical properties of the leg, foot, and ankle, SAE 962424CrossRefGoogle Scholar
  8. Crandall J, Martin P, Sieveka E, Klopp G, Kuhlmann T, Pilkey W, Dischinger P, Burgess A, O’Quinn T, Schmidhauser C (1995): The influence of footwell intrusion on lower extremity response and injury in frontal crashes, Proc. 39th AAAM Conf., pp. 269–286Google Scholar
  9. Håland Y, Hjerpe E, Lövsund P (1998): An inflatable carpet to reduce the loading of the lower extremites evaluation by a new sled test method with toepan intrusion, Proc. ESV Conf. paper no. 98-S 1-P-18EGoogle Scholar
  10. Hirsch A, White L (1965): Mechanical stiffness of man’s lower limbs, Proc. ASME Winter CongressGoogle Scholar
  11. Hubacher M, Wettstein A (2000): Die Wirksamkeit des Hüft-Protektors zur Vermeidung von sturzbedingten Schenkelhalsfrakturen, Schweizerische Beratungsstelle füür Unfallverhütung, Berne, SwitzerlandGoogle Scholar
  12. Kannus P, Parkkari J, Poutala J (1999): Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly: an in vitro biomechanical study, Bone, Vol. 25, pp. 229–235CrossRefGoogle Scholar
  13. King A (2002): Injuries to the the thoracolumbar spine and pelvis, in Accidental Injury — Biomechanics and Prevention (Eds. Nahum, Melvin), Springer Verlag, New YorkGoogle Scholar
  14. Kitagawa Y, Ichikawa H, King A, Levine R (1998a): A severe ankle and foot injury in frontal crashes and its mechanism, SAE 983145CrossRefGoogle Scholar
  15. Kitagawa Y, Ichikawa H, Pal C, King A, Levine R (1998b): Lower leg injuries caused by dynamic axial loading and muscle tensing, Proc. ESV Conf., Paper no. 98-S7-O-09Google Scholar
  16. Kramer F (1998): Passive Sicherheit von Kraftfahrzeugen, Vieweg Verlag, Braunschweig, GermanyGoogle Scholar
  17. Levine R (2002): Injuries to the extremities, in Accidental Injury — Biomechanics and Prevention (Eds. Nahum, Melvin), Springer Verlag, New YorkGoogle Scholar
  18. McMaster J, Parry M, Wallace W, Wheeler L, Owen C, Lowne R, Oakley C, Roberts A (2000): Biomechanics of ankle and hindfoot injuries in dynamic axial loading, Proc. 44th Stapp Car Crash Conf., paper no. 2000–01-5C23Google Scholar
  19. Nusholtz Alem N, Melvin J (1982): Impact response and injury to the pelvis, Proc. 26th Stapp Car Crash Conf., SAE 821160Google Scholar
  20. Otte D (2002): Unpublished evaluation of the MHH data baseGoogle Scholar
  21. Parenteau C, Viano D, Petit P (1998): Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading, J Biomechanical Engineering, Vol. 120, pp. 105–111CrossRefGoogle Scholar
  22. Petit P, Portier L, Foret-Bruno J, Trosseille X, Parenteau C, Coltat J, Tarriere C, Lassau J (1996): Quasistatic characterization of the human foot-ankle joints in a simulated tensed state and updated accidentological data, Proc. IRCOBI Conf., pp. 363–376Google Scholar
  23. Sobotta J (1997): Atlas der Anatomie des Menschen, Band 1 & 2, Urban und Schwarzenberg; München, GermanyGoogle Scholar
  24. Vetter D (2000): Seminar: Biomechanik und Dummy-Technik, TU-BerlinGoogle Scholar
  25. Viano D, Lau I, Asbury C, King A, Begeman P (1989): Biomechanics of the human chest, abdomen, and pelvis in lateral impact, Proc. 33rd AAAM Conf., pp. 367–382Google Scholar
  26. Yamada H (1970): Strength of biological materials, R.E. Krieger Publ.; New YorkGoogle Scholar
  27. Yoganandan N, Pintar F, Boynton M, Begeman P, Prasad D, Kuppa S, Morgan R, Eppinger R (1996): Dynamic axial tolerance of the human foot-ankle complex, SAE 962426CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kai-Uwe Schmitt
    • 1
  • Peter F. Niederer
  • Felix Walz
  1. 1.Institute for Biomedical EngineeringSwiss Federal Institute of Technology (ETH) and University of ZurichZurichSwitzerland

Personalised recommendations