Relations to Monitor Manifolds

  • Vladimir D. Liseikin
Part of the Scientific Computation book series (SCIENTCOMP)


An arbitrary physical geometry is considered in modern grid technology as an n-dimensional surface S xn , in particular, a domain (curve or line in the one-dimensional case) whose mathematical representation is formulated locally in a general parametric form
$$X(S):\mathop s\nolimits^N \to \mathop R\nolimits^{n + \mathop n\nolimits_o} ,s = (\mathop S\nolimits^1 ,...,\mathop S\nolimits^n),x(\mathop x\nolimits^1 ,...\mathop x\nolimits^{n + \mathop n\nolimits_o})$$
where x(s) is a smooth transformation of rank n, while S n R n is a parametric domain.


Manifold Gall Dinates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Vladimir D. Liseikin
    • 1
  1. 1.Institute of Computational TechnologiesSiberian Branch of the Russian Academy of SciencesNovosibirsk 90Russia

Personalised recommendations