Skip to main content

Functional Expression of CXCR4 in S. cerevisiae: Development of Tools for Mechanistic and Pharmacologic Studies

  • Conference paper
Chemokine Roles in Immunoregulation and Disease

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 45))

  • 62 Accesses

Abstract

Chemokines are cytokines that program directed migration of leukocyte subsets (Loetscher et al. 2000). These small proteins (~8–14 kDa) form the largest family of secreted intercellular messengers, having over 43 members recognized at this time. The family is characterized by the presence of four positionally conserved cysteine residues and subdivided into four branches based on the relationship of the two amino-proximal cysteines: C-C, C-X-C, C-X3-C, and C. Cellular signals for chemokines are transduced by members of the G-protein coupled receptor (GPCR) family that also cosegregate along these four subdivisions (Murphy et al. 2000). It is now recognized that in addition to promoting inflammation through recruitment of leukocyte subsets, chemokines play a central role in directing the development of tissues outside the hemato-lymphoid system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baranski TJ, Herzmark P, Lichtarge O, Gerber BO, Trueheart J, Meng EC, Iiri T, Sheikh SP, Bourne HR (1999) C5a receptor activation. Genetic identification of critical residues in four transmembrane helices. J Biol Chem 274:15757–15765

    Article  PubMed  CAS  Google Scholar 

  • Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV- 1 entry. Nature 382:829–833

    Article  PubMed  CAS  Google Scholar 

  • Boshoff C, Endo Y, Collins PD, Takeuchi Y, Reeves JD, Schweickart VL, Siani MA, Sasaki T, Williams TJ, Gray PW, Moore PS, Chang Y, Weiss RA (1997) Angiogenic and HIV- inhibitory functions of KSHV- encoded chemokines. Science 278:290–294

    Article  PubMed  CAS  Google Scholar 

  • Brelot A, Heveker N, Montes M, Alizon M (2000) Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem 275:23736–23744

    Article  PubMed  CAS  Google Scholar 

  • Chabot DJ, Chen H, Dimitrov DS, Broder CC (2000) N-linked glycosylation of CXCR4 masks coreceptor function for CCRS-dependent human immunodeficiency virus type 1 isolates. J Virol 74:4404–4413

    Article  PubMed  CAS  Google Scholar 

  • Erickson JR, Wu JJ, Goddard JG, Tigyi G, Kawanishi K, Tomei LD, Kiefer MC (1998) Edg-2/Vzg-1 couples to the yeast pheromone response pathway selectively in response to lysophosphatidic acid. J Biol Chem 273:1506–1510

    Article  PubMed  CAS  Google Scholar 

  • Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770

    Article  PubMed  CAS  Google Scholar 

  • Farzan M., Babcock GJ, Vasilieva N, Wright PL, Kiprilov E, Mirzabekov T, Choe H (2002) The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1 a association and HIV 1 entry. J Biol Chem 277:29484–29489

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Broder CC, Kennedy PE, Berger, EA (1996) HIV- 1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877

    Article  PubMed  CAS  Google Scholar 

  • Gether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, Kobilka BK (1997) Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenoceptor. EMBO J 16:6737–6747

    Article  PubMed  CAS  Google Scholar 

  • Geva A, Lassere TB, Lichtarge O, Pollitt SK, Baranski TJ (2000) Genetic mapping of the human C5a receptor. Identification of transmembrane amino acids critical for receptor function. J Biol Chem 275:35393–35401

    Article  PubMed  CAS  Google Scholar 

  • Ho HH, Ganeshalingam N, Rosenhouse-Dantsker A, Osman R, Gershengorn MC (2001) Charged residues at the intracellular boundary of transmembrane helices 2 and 3 independently affect constitutive activity of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. J Biol Chem 276:1376–1382

    Article  PubMed  CAS  Google Scholar 

  • Hu QX, Barry AP, Wang ZX, Connolly SM, Peiper SC, Greenberg ML (2000) Evolution of the human immunodeficiency virus type 1 envelope during infection reveals molecular corollaries of specificity for coreceptor utilization and AIDS pathogenesis. J Virol 74:11858–11872

    Article  PubMed  CAS  Google Scholar 

  • King K, Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ (1990) Control of yeast mating signal transduction by a mammalian β2-adrenergic receptor and Gs a subunit. Science 250:121–123

    Article  PubMed  CAS  Google Scholar 

  • Klein C, Paul JI, Sauve K, Schmidt MM, Arcangeli L, Ransom J, Trueheart J, Manfredi JP, Broach JR, Murphy AJ (1998) Identification of surrogate agonists for the human FPRL-1 receptor by autocrine selection in yeast. Nat Biotechnol 16:1334–1337

    Article  PubMed  CAS  Google Scholar 

  • Lin SW, Sakmar TP (1996) Specific tryptophan UV- absorbance changes are probes of the transition of rhodopsin to its active state. Biochemistry 35:11149–11159

    Article  PubMed  CAS  Google Scholar 

  • Loetscher P, Moser B, Baggiolini M (2000) Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol 74:127–180

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Berson JF, Chen Y, Turner JD, Zhang T, Sharron M, Jenks MH, Wang Z, Kim J, Rucker J, Hoxie JA, Peiper SC, Doms RW (1997) Evolution of HIV- 1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Proc Natl Acad Sci U S A 94:6426–6431

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A 95:9448–9453

    Article  PubMed  CAS  Google Scholar 

  • Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Nakajima T, Koyanagi Y, Tachibana K, Fujii N, Tamamura H, Yoshida N, Waki M, Matsumoto A, Yoshie O, Kishimoto T, Yamamoto N, Nagasawa T (1997) A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV- 1 infection. J Exp Med 186:1389–1393

    Article  PubMed  CAS  Google Scholar 

  • Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    PubMed  CAS  Google Scholar 

  • Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    Article  PubMed  CAS  Google Scholar 

  • Navenot JM, Wang ZX, Trent JO, Murray JL, Hu QX, DeLeeuw L, Moore PS, Chang Y, Peiper SC (2001) Molecular anatomy of CCR5 engagement by physiologic and viral chemokines and HIV- 1 envelope glycoproteins: differences in primary structural requirements for RANTES, MIP-1 a, and vMIP-II binding. J Mol Biol 313:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Niehrs C, Huttner WB, Carvallo D, Degryse E (1990) Conversion of recombinant hirudin to the natural form by in vitro tyrosine sulfation. Differential substrate specificities of leech and bovine tyrosylprotein sulfotransferases. J Biol Chem 265:9314–9318

    PubMed  CAS  Google Scholar 

  • Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T- cell-line-adapted HIV- 1. Nature 382:833–835

    Article  PubMed  CAS  Google Scholar 

  • Pauwels PJ, Wurch T (1998) Review: amino acid domains involved in constitutive activation of G-protein-coupled receptors. Mol Neurobiol 17:109–135

    Article  PubMed  CAS  Google Scholar 

  • Price LA, Kajkowski EM, Hadcock JR, Ozenberger BA, Pausch MH (1995) Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway. Mol Cell Biol 15:6188–6195

    PubMed  CAS  Google Scholar 

  • Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268:4625–4636

    PubMed  CAS  Google Scholar 

  • Schols D, Struyf S, Van Damme J, Este JA, Henson G, De Clercq E (1997) Inhibition of T- tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 186:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Sheikh SP, Zvyaga TA, Lichtarge O, Sakmar TP, Bourne HR (1996) Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383:347–350

    Article  PubMed  CAS  Google Scholar 

  • Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594

    Article  PubMed  CAS  Google Scholar 

  • Tamamura H, Omagari A, Oishi S, Kanamoto T, Yamamoto N, Peiper SC, Nakashima H, Otaka A, Fujii N (2000) Pharmacophore identification of a specific CXCR4 inhibitor, T140, leads to development of effective antiHIV agents with very high selectivity indexes. Bioorg Med Chem Lett 10:2633–2637

    Article  PubMed  CAS  Google Scholar 

  • Willett BJ, Adema K, Heveker N, Brelot A, Picard L, Alizon M, Turner JD, Hoxie JA, Peiper S, Neil JC, Hosie MJ (1998) The second extracellular loop of CXCR4 determines its function as a receptor for feline immunodeficiency virus. J Virol 72:6475–6481

    PubMed  CAS  Google Scholar 

  • Xu H, Petersen EI, Petersen SB, el-Gewely MR (1999) Random mutagenesis libraries: optimization and simplification by PCR. Biotechniques 27:1102–1104, 1106, 1108

    PubMed  CAS  Google Scholar 

  • Zhang WB, Navenot JM, Haribabu B, Tamamura H, Hiramatu K, Omagari A, Pei G, Manfredi JP, Fujii N, Broach JR, Peiper SC (2002) A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40–4C are weak partial agonists. J Biol Chem 277:24515–24521

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Tai HH (1999) Characterization of recombinant human CXCR4 in insect cells: role of extracellular domains and N-glycosylation in ligand binding. Arch Biochem Biophys 369:267–276

    Article  PubMed  CAS  Google Scholar 

  • Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, WB., Wang, ZX., Murray, J.L., Fujii, N., Broach, J., Peiper, S.C. (2004). Functional Expression of CXCR4 in S. cerevisiae: Development of Tools for Mechanistic and Pharmacologic Studies. In: Murphy, P.M., Horuk, R. (eds) Chemokine Roles in Immunoregulation and Disease. Ernst Schering Research Foundation Workshop, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05403-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05403-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05405-5

  • Online ISBN: 978-3-662-05403-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics