Advertisement

Integral Transformations

  • Ilja N. Bronshtein
  • Konstantin A. Semendyayev
  • Gerhard Musiol
  • Heiner Muehlig

Abstract

AnIntegral transformation is a correspondence between two functions f(t) and F(p) in the form
$$F(p) = \int\limits_{ - \infty }^{ + \infty } {K(p,t)f(t} )dt$$
(15.1a)
.

Keywords

Discrete Wavelet Transformation Wavelet Transformation Image Space Original Function Laplace Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [15.1]
    Blatter, C: Wavelets. — Eine Einführung. — Vieweg 1998.Google Scholar
  2. [15.2]
    Doetsch, G. : Introduction to the Theory and Application of the Laplace Transformation. — Springer-Verlag 1974.MATHCrossRefGoogle Scholar
  3. [15.3]
    Dyke, P.P.G.: An Introduction to Laplace Transforms and Fourier Series. — Springer-Verlag 2000.MATHGoogle Scholar
  4. [15.4]
    Fetzer, V.: Integral-Transformationen. — Hüthig 1977.MATHGoogle Scholar
  5. [15.5]
    Föllinger, O.: Laplace- und Fourier-Transformation. — Hüthig 1993.MATHGoogle Scholar
  6. [15.6]
    Gauss, E.: WALSH-Funktionen für Ingenieure und Naturwissenschaftler. — B. G. Teubner 1994.MATHCrossRefGoogle Scholar
  7. [15.7]
    Hubbard, B.B.: Wavelets. Die Mathematik der kleinen Wellen. — Birkhäuser 1997.MATHGoogle Scholar
  8. [15.8]
    Jennison, R.C.: Fourier Transforms and Convolutions for the Experimentalist. — Pergamon Press 1961.MATHGoogle Scholar
  9. [15.9]
    Louis, A. K.; Maass, P.; Rieder, A.: Wavelets. Theorie und Anwendungen. —B. G. Teubner 1994.MATHCrossRefGoogle Scholar
  10. [15.10]
    Oberhettinger, F.: Tables of Fourier Transforms of Distributions. — Springer-Verlag 1990.MATHCrossRefGoogle Scholar
  11. [15.11]
    Oberhettinger, F.; Badil, L.: Tables of Laplace Transforms. — Springer-Verlag 1973.MATHCrossRefGoogle Scholar
  12. [15.12]
    Papoulis, A.: The Fourier Integral and its Applications. — McGraw Hill 1962.MATHGoogle Scholar
  13. [15.13]
    Schiff, J.L.: The Laplace Transform. — Theory and Applications. — Springer-Verlag 1999.MATHGoogle Scholar
  14. [15.14]
    Sirovich, L.: Introduction to Applied Mathematics. — Springer-Verlag 1988.MATHGoogle Scholar
  15. [15.15]
    Tolimieri, R.; An, M.; Lu, C.: Mathematics of Multidimensional Fourier Transforms Algorithms. — Springer-Verlag 1997.CrossRefGoogle Scholar
  16. [15.16]
    Tolimieri, R.; An, M.; Lu, C: Algorithms for Discrete Transform and Convolution. — Springer-Verlag 1997.MATHCrossRefGoogle Scholar
  17. [15.17]
    Voelker, D.; Doetsch, G.: Die zweidimensionale Laplace-Transformation. — Birkhäuser 1950.MATHGoogle Scholar
  18. [15.18]
    Walker, J.S.: Fast Fourier Transforms. — Springer-Verlag 1996.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ilja N. Bronshtein
  • Konstantin A. Semendyayev
  • Gerhard Musiol
  • Heiner Muehlig

There are no affiliations available

Personalised recommendations