Integral Transformations

  • Ilja N. Bronshtein
  • Konstantin A. Semendyayev
  • Gerhard Musiol
  • Heiner Muehlig

Abstract

AnIntegral transformation is a correspondence between two functions f(t) and F(p) in the form
$$F(p) = \int\limits_{ - \infty }^{ + \infty } {K(p,t)f(t} )dt$$
(15.1a)
.

Keywords

Convolution Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [15.1]
    Blatter, C: Wavelets. — Eine Einführung. — Vieweg 1998.Google Scholar
  2. [15.2]
    Doetsch, G. : Introduction to the Theory and Application of the Laplace Transformation. — Springer-Verlag 1974.MATHCrossRefGoogle Scholar
  3. [15.3]
    Dyke, P.P.G.: An Introduction to Laplace Transforms and Fourier Series. — Springer-Verlag 2000.MATHGoogle Scholar
  4. [15.4]
    Fetzer, V.: Integral-Transformationen. — Hüthig 1977.MATHGoogle Scholar
  5. [15.5]
    Föllinger, O.: Laplace- und Fourier-Transformation. — Hüthig 1993.MATHGoogle Scholar
  6. [15.6]
    Gauss, E.: WALSH-Funktionen für Ingenieure und Naturwissenschaftler. — B. G. Teubner 1994.MATHCrossRefGoogle Scholar
  7. [15.7]
    Hubbard, B.B.: Wavelets. Die Mathematik der kleinen Wellen. — Birkhäuser 1997.MATHGoogle Scholar
  8. [15.8]
    Jennison, R.C.: Fourier Transforms and Convolutions for the Experimentalist. — Pergamon Press 1961.MATHGoogle Scholar
  9. [15.9]
    Louis, A. K.; Maass, P.; Rieder, A.: Wavelets. Theorie und Anwendungen. —B. G. Teubner 1994.MATHCrossRefGoogle Scholar
  10. [15.10]
    Oberhettinger, F.: Tables of Fourier Transforms of Distributions. — Springer-Verlag 1990.MATHCrossRefGoogle Scholar
  11. [15.11]
    Oberhettinger, F.; Badil, L.: Tables of Laplace Transforms. — Springer-Verlag 1973.MATHCrossRefGoogle Scholar
  12. [15.12]
    Papoulis, A.: The Fourier Integral and its Applications. — McGraw Hill 1962.MATHGoogle Scholar
  13. [15.13]
    Schiff, J.L.: The Laplace Transform. — Theory and Applications. — Springer-Verlag 1999.MATHGoogle Scholar
  14. [15.14]
    Sirovich, L.: Introduction to Applied Mathematics. — Springer-Verlag 1988.MATHGoogle Scholar
  15. [15.15]
    Tolimieri, R.; An, M.; Lu, C.: Mathematics of Multidimensional Fourier Transforms Algorithms. — Springer-Verlag 1997.CrossRefGoogle Scholar
  16. [15.16]
    Tolimieri, R.; An, M.; Lu, C: Algorithms for Discrete Transform and Convolution. — Springer-Verlag 1997.MATHCrossRefGoogle Scholar
  17. [15.17]
    Voelker, D.; Doetsch, G.: Die zweidimensionale Laplace-Transformation. — Birkhäuser 1950.MATHGoogle Scholar
  18. [15.18]
    Walker, J.S.: Fast Fourier Transforms. — Springer-Verlag 1996.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ilja N. Bronshtein
  • Konstantin A. Semendyayev
  • Gerhard Musiol
  • Heiner Muehlig

There are no affiliations available

Personalised recommendations