Functional Analysis

  • Ilja N. Bronshtein
  • Konstantin A. Semendyayev
  • Gerhard Musiol
  • Heiner Muehlig


Functional analysis arose after the recognition of a common structure in different disciplines such as the sciences, engineering and economics. General principles were discovered that resulted in a common and unified approach in calculus, linear algebra, geometry, and other mathematical fields, showing their interrelations.


Hilbert Space Banach Space Vector Space Normed Space Compact Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [12.1]
    Achieser, N.I.; Glasmann, I.M.: Theory of Linear Operators in Hilbert Space. — M. Nestell. Ungar. 1961.Google Scholar
  2. [12.2]
    Aliprantis, C.D.; Burkinshaw, O.: Positive Operators. — Academic Press 1985.MATHGoogle Scholar
  3. [12.3]
    Aliprantis, C.D.; Border, K.C.; Luxemburg, W.A.J.: Positive Operators, Riesz Spaces and Economics. — Springer-Verlag 1991.MATHCrossRefGoogle Scholar
  4. [12.4]
    Alt, H.W.: Lineare Funktionalanalysis. — Eine anwendungsorientierte Einführung. — Springer-Verlag 1976.Google Scholar
  5. [12.5]
    Balakrishnan, A.V.: Applied Functional Analysis. — Springer-Verlag 1976.MATHGoogle Scholar
  6. [12.6]
    Bauer, H.:Maß- und Integrationstheorie. — Verlag W. de Gruyter 1990.MATHGoogle Scholar
  7. [12.7]
    Bronstein, I.N.; Semendajew, K.A.: Ergänzende Kapitel zum Taschenbuch der Mathematik. BSB B. G. Teubner 1970; Verlag H. Deutsch 1990.MATHGoogle Scholar
  8. [12.8]
    Dunford, N.; Schwartz, J.T.: Linear Operators, Vols. I, II, III. — Intersciences 1958, 1963, 1971.Google Scholar
  9. [12.9]
    Edwards, R.E.: Functional Analysis. — Holt, Rinehart and Winston 1965.MATHGoogle Scholar
  10. [12.10]
    Gajewski, H.; Geöger, K.; Zacharias, K.: Nichtlineare Operatorengleichungen und Operatordifferentialgleichungen. — Akademie-Verlag 1974.Google Scholar
  11. [12.11]
    Halmos, P.R.: A Hilbert Space Problem Book. — Van Nostrand 1967.MATHGoogle Scholar
  12. [12.12]
    Hutson, V.C.L.; Pym, J.S.: Applications of Functional Analysis and Operator Theory. — Academic Press 1980.MATHGoogle Scholar
  13. [12.13]
    Hewitt, E.; Stromberg, K.: Real and Abstract Analysis. Springer-Verlag 1965.MATHCrossRefGoogle Scholar
  14. [12.14]
    Joshi, M.C.; Bose, R.K.: Some Topics in Nonlinear Functional Analysis. — Wiley Eastern 1985.MATHGoogle Scholar
  15. [12.15]
    Kantorovich, L.V.; Akilow, G.P.: Functional Analysis — Pergamon Press 1982.MATHGoogle Scholar
  16. [12.16]
    Kolmogorow, A.N.; Fomin, S.W.: Introduction to Functional Analysis. — Graylock Press 1961.Google Scholar
  17. [12.17]
    Krasnoselskij, M.A.; Lifshitz, J.A., Sobolev, A.V.: Positive Linear Systems. — Heldermann-Verlag 1989.Google Scholar
  18. [12.18]
    Lusternik, L.A.; Sobolew, V.I.: Elements of Functional Analysis. — Gordon and Breach 1961, Hindustan Publishing Corporation Delhi 1974, in German: Verlag H. Deutsch 1975.Google Scholar
  19. [12.19]
    Meyer-Nieberg, P.: Banach Lattices. — Springer-Verlag 1991.MATHCrossRefGoogle Scholar
  20. [12.20]
    Naimark, M.A.: Normed Rings. — Wolters-Noordhoff 1972.Google Scholar
  21. [12.21]
    Ruin, W.: Functional Analysis. — McGraw-Hill 1973.Google Scholar
  22. [12.22]
    Schaefer, H.H.: Topological Vector Spaces. — Macmillan 1966.MATHGoogle Scholar
  23. [12.23]
    Schaefer, H.H.: Banach Lattices and Positive Operators. — Springer-Verlag 1974.MATHCrossRefGoogle Scholar
  24. [12.24]
    Yosida, K.: Functional Analysis. Springer-Verlag 1965.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ilja N. Bronshtein
  • Konstantin A. Semendyayev
  • Gerhard Musiol
  • Heiner Muehlig

There are no affiliations available

Personalised recommendations