Complex Systems and the Evolution of Matter

  • Klaus Mainzer

Abstract

How can order arise from complex, irregular, and chaotic states of matter? In classical antiquity philosophers tried to take the complexity of natural phenomena back to first principles. Astronomers suggested mathematical models in order to reduce the irregular and complex planetary orbits as they are experienced to regular and simple movements of spheres. Simplicity was understood, still for Copernicus, as a feature of truth (Sect. 2.1). With Newton and Leibniz something new was added to the theory of kinetic models. The calculus allows scientists to compute the instaneous velocity of a body and to visualize it as the tangent vector of the body’s trajectory. The velocity vector field has become one of the basic concepts in dynamical systems theory. The cosmic theories of Newton and Einstein have been described by dynamical models which are completely deterministic (Sect. 2.2).

Keywords

Entropy Fatigue Mercury Manifold Molybdenum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    For historical sources of Sect. 2.1 compare Mainzer, K.: Symmetries in Nature. De Gruyter: New York (1994) (German original 1988 ) Chapter 1Google Scholar
  2. 2.2
    Diels, H.: Die Fragmente der Vorsokratiker, 6th ed., revised by W. Kranz, 3 vol. Berlin (1960/1961) (abbrev.: Diels-Kranz), 12 A 10 (Pseudo-Plutarch)Google Scholar
  3. 2.3
    Diels-Kranz 13 A 5, B 1Google Scholar
  4. 2.4
    Diels-Kranz 22 B 64, B 30Google Scholar
  5. 2.5
    Heisenberg, W: Physik und Philosophie. Ullstein: Frankfurt (1970) 44Google Scholar
  6. 2.6
    Diels-Kranz 22 B8Google Scholar
  7. 2.7
    Diels-Kranz 31 B8Google Scholar
  8. 2.8
    Heisenberg, W: Die Plancksche Entdeckung und die philosophischen Grundlagen der Atomlehre, in: Heisenberg, W: Wandlungen in den Grundlagen der Naturwissenschaften. S. Hirzel: Stuttgart (1959) 163Google Scholar
  9. 2.9
    Cf. also Hanson, N.R.: Constellations and Conjectures. Boston (1973) 101Google Scholar
  10. 2.10
    Hanson, N.R. (see Note 9, 113) carried out corresponding calculations. 2. 11 Bohr, H.: Fastperiodische Funktionen. Berlin (1932)Google Scholar
  11. 2.12
    Forke, A.: Geschichte der alten chinesischen Philosophie. Hamburg (1927) 486;Google Scholar
  12. Fêng Yu-Lan: A History of Chinese Philosophy vol. 2: The Period of Classical Learning. Princeton NJ (1953) 120Google Scholar
  13. 2.13
    Mainzer, K.: Geschichte der Geometrie. B. I. Wissenschaftsverlag: Mannheim/ Wien/Zürich (1980) 83;MATHGoogle Scholar
  14. Edwards, C.H.: The Historical Development of the Calculus. Springer: Berlin (1979) 89MATHCrossRefGoogle Scholar
  15. 2.14
    Mainzer, K.: Geschichte der Geometrie (see Note 13) 100;Google Scholar
  16. Abraham, R.H./Shaw, C.D.: Dynamics — The Geometry of Behavior Part 1. Aerial Press: Santa Cruz (1984) 20Google Scholar
  17. 2.15
    Audretsch, J./Mainzer, K. (eds.): Philosophie und Physik der Raum-Zeit. B.I. Wissenschaftsverlag: Mannheim (1988) 30Google Scholar
  18. 2.16
    Audretsch, J./Mainzer, K. (eds.): Philosophie und Physik der Raum-Zeit (see Note 15 ) 40;Google Scholar
  19. Weyl, H.: Raum, Zeit, Materie. Vorlesung über Allgemeine Relativitätstheorie. Wissenschaftliche Buchgesellschaft: Darmstadt (1961) (Reprint of the 5th Edition (1923)) 141Google Scholar
  20. 2.17
    Mach, E.: Die Mechanik. Historisch-kritisch dargestellt. Wissenschaftliche Buchgesellschaft: Darmstadt (1976) (Reprint of the 9th Edition (1933)) 149;Google Scholar
  21. Abraham, R.H./Shaw, C.D.: Dynamics — The Geometry of Behavior (see Note 14 ) 57Google Scholar
  22. 2.18
    Ruelle, D.: Small random pertubations of dynamical systems and the definition of attractors. Commun. Math. Phys. 82 (1981) 137–151;MathSciNetADSMATHCrossRefGoogle Scholar
  23. Abraham, R.H./Shaw, C.D.: Dynamics — The Geometry of Behavior (see Note 14 ) 45Google Scholar
  24. 2.19
    For an analytical elaboration cf. Stauffer, D., Stanley, H.E.: From Newton to Mandelbrot. A Primer in Theoretical Physics. Springer: Berlin (1990) 26Google Scholar
  25. 2.20
    Nicolis, G./Prigogine, I.: Die Erforschung des Komplexen (see Chapter 1, Note 3 ) 132;Google Scholar
  26. Abraham, R.H./Shaw, C.D.: Dynamics — The Geometry of Behavior (see Note 14) 168, 174Google Scholar
  27. 2.21
    For an analytical elaboration cf. Mainzer, K.: Symmetries in Nature (see Note 1) Chapter 3. 31;Google Scholar
  28. Stauffer, D./Stanley, H.E.: From Newton to Mandelbrot (see Note 19 ) 24Google Scholar
  29. 2.22
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer: Berlin (1978);MATHGoogle Scholar
  30. Davies, P.C.W.: The Physics of Time Asymmetry. Surrey University Press: London (1974);Google Scholar
  31. Penrose, R.: The Emperor’s New Mind. Oxford University Press: Oxford (1989) 181Google Scholar
  32. 2.23
    Lichtenberg, A.J./Liebermann, M.A.: Regular and Stochastic Motion. Springer: Berlin (1982);Google Scholar
  33. Schuster, H.G.: Deterministic Chaos. An Introduction. Physik-Verlag: Weinheim (1984) 137MATHGoogle Scholar
  34. 2.24
    Poincaré, H.: Les Méthodes Nouvelles de la Méchanique Céleste. Gauthier-Villars: Paris (1892)Google Scholar
  35. 2.25
    Arnold, V.I.: Small Denominators II, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally-periodic motions under a small perturbation of the Hamiltonian, Russ. Math. Surveys 18 (1963) 5;ADSGoogle Scholar
  36. Kolmogorov, A.N.: On Conservation of Conditionally-Periodic Motions for a Small Change in Hamilton’s Function, Dokl. Akad. Nauk. USSR 98 (1954) 525;MathSciNetGoogle Scholar
  37. Moser, J.: Convergent series expansions of quasi-periodic motions, Math. Anm 169 (1967) 163Google Scholar
  38. 2.26
    Cf. Arnold, V.I.: Mathematical Methods of Classical Mechanics (see Note 22);Google Scholar
  39. Schuster, H.G.: Deterministic Chaos (see Note 23), 141Google Scholar
  40. 2.27
    Hénon, M./Heiles, C.: The applicability of the third integral of the motion: Some numerical experiments, Astron. J. 69 (1964) pp. 73;ADSCrossRefGoogle Scholar
  41. Schuster, H.G.: Deterministic Chaos (see Note 23), 150;Google Scholar
  42. Figures 2.16a-d from M.V. Berry in S. Jorna (ed.), Topics in nonlinear dynamics, Am. Inst. Phys. Conf. Proc. vol. 46 (1978)Google Scholar
  43. 2.28
    For mathematical details compare, e.g. Staufer, D., Stanley, H.E.: From Newton to Mandelbrot (see Note 19 ), 83Google Scholar
  44. 2.29
    Mainzer, K.: Symmetrien der Natur (see Note 1), 423;Google Scholar
  45. Primas, H./Müller-Herold, U.: Elementare Quantenchemie. Teubner: Stuttgart (1984) with an elementary introduction to the Galileo-invariant quantum mechanics (Chapter 3)Google Scholar
  46. 2.30
    Audretsch, J./Mainzer, K. (eds.): Wieviele Leben hat Schrödingers Katze? B. I. Wissenschaftsverlag: Mannheim (1990)Google Scholar
  47. 2.31
    Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer: Berlin (1990)MATHGoogle Scholar
  48. 2.32
    Friedrich, H.: Chaos in Atomen, in: Mainzer, K., Schirmacher, W. (eds.): Quanten, Chaos und Dämonen (see Note 1 of Chapter 1);Google Scholar
  49. Friedrich, H./Wintgen, D.: The hydrogen atom in a uniform magnetic field, Physics Reports 183 (1989) 37–79MathSciNetADSCrossRefGoogle Scholar
  50. 2.33
    Birkhoff, G.D.: Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Novi Lyncaei 1 (1935) 85Google Scholar
  51. 2.34
    Enz, C.P.: Beschreibung nicht-konservativer nicht-linearer Systeme I-II, Physik in unserer Zeit 4 (1979) 119–126, 5 (1979) 141–144 (II)Google Scholar
  52. 2.35
    Lorenz, E.N.: Deterministic nonperiodic flow, J. Atoms. Sci. 20 (1963) 130;ADSCrossRefGoogle Scholar
  53. Schuster, H.G.: Deterministic Chaos (see Note 23) 9Google Scholar
  54. 2.36
    Eckmann, J.P.: Roads to turbulence in dissipative dynamical systems, Rev. Mod. Phys. 53 (1981) 643;MathSciNetADSMATHCrossRefGoogle Scholar
  55. Computer simulation of Fig. 2.21 from Lanford, O.E., Turbulence Seminar, in: Bernard, P., Rativ, T. (eds.): Lecture Notes in Mathematics 615, Springer: Berlin (1977) 114Google Scholar
  56. 2.37
    Mandelbrot, B.B.: The Fractal Geometry of Nature, Freeman: San Fransisco (1982);MATHGoogle Scholar
  57. Grassberger, P.: On the Hausdorff dimension of fractal attractors, J. Stat. Phys. 19 (1981) 25;Google Scholar
  58. Lichtenberg, A.J./Liebermann, M.A.: Regular and Stochastic Motions (see Note 23)Google Scholar
  59. 2.38
    Collet, E./Eckmann, J P.: Iterated Maps of the Interval as Dynamical Systems, Birkhäuser: Boston (1980) (see Figures 2. 22–24 )Google Scholar
  60. 2.39
    Großmann, S./Thomae, E.: Invariant distributions and stationary correlation functions of one-dimensional discrete processes, Z. Naturforsch. 32 A (1977) 353;Google Scholar
  61. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19 (1978) 25MathSciNetADSMATHCrossRefGoogle Scholar
  62. 2.40
    Mainzer, K.: Symmetrien der Natur (see Note 1)Google Scholar
  63. 2.41
    Cf. Nicolis, G./Prigogine, I.: Die Erforschung des Komplexen (see Note 3, Chapter 1 ) 205Google Scholar
  64. 2.42
    Cf. Prigogine, I.: From Being to Becoming — Time and Complexity in Physical Sciences, Freemann: San Fransisco (1980);Google Scholar
  65. Cf. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes, Wiley: New York (1961)Google Scholar
  66. 2.43
    Fig. 2.26 from Feynman, R.P./Leighton, R.B./Sands, M.: The Feynman Lectures of Physics vol. II., Addison-Wesley (1965)Google Scholar
  67. 2.44
    Haken, H.: Synergetics (see Note 4, Chapter 1 ) 5Google Scholar
  68. 2.45
    Haken, H.: Synergetics (see Note 4, Chapter 1 ) 202;Google Scholar
  69. Haken, H.: Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and Devices. Springer: Berlin (1983) 187;MATHGoogle Scholar
  70. Weinberg, S.: Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity. Wiley: New York (1972)Google Scholar
  71. 2.46
    Cf. Mainzer, K.: Symmetrien der Natur (see Note 1) Chapter 4Google Scholar
  72. 2.47
    Curie, P.: Sur la Symétrie dans les Phénomènes Physiques, Journal de Physique 3 (1894) 3Google Scholar
  73. 2.48
    Audretsch, J./Mainzer, K. (eds.): Vom Anfang der Welt. C.H. Beck: München (1990);Google Scholar
  74. Mainzer, K.: Symmetrien der Natur (see Note 1) 515;Google Scholar
  75. Fritzsch, H.: Vom Urknall zum Zerfall. Die Welt zwischen Anfang and Ende. Piper: München (1983) 278Google Scholar
  76. 2.49
    Hawking, S.: A Brief History of Time. From the Big Bang to Black Holes. Bantam Press: London (1988);Google Scholar
  77. Hoyle, F./Burbridge, G./Narlikar, J.V.: A quasi-steady state cosmological model with creation of matter. Astrophys. Journal 410 (1993) 437457Google Scholar
  78. 2.50
    Hartle, J.B./Hawking, S.W.: Wave function in the universe. Physical Review D 28 (1983) 2960–2975;MathSciNetADSCrossRefGoogle Scholar
  79. Mainzer, K.: Hawking. Herder: Freiburg (2000)Google Scholar
  80. 2.51
    Audretsch, J./Mainzer, K. (eds.): Vom Anfang der Welt (see Note 48 ) 165Google Scholar
  81. 2.52
    Greene, B.: The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. W.W. Norton & Co: New York (1999);Google Scholar
  82. Hawking, S.W.: The Universe in a Nutshell. Bantam Books: New York (2001);Google Scholar
  83. Mainzer, K.: The Little Book of Time. Copernicus Books: New York (2002)Google Scholar
  84. 2.53
    Whitesides, G.M./Mathias, J.P./Seto, C.T.: Molecular self-assembly and nano-chemistry: A chemical strategy for the synthesis of nanostructures. Science 254 (1991) 1312–1319ADSCrossRefGoogle Scholar
  85. 2.54
    Feynman, R.: There’s plenty of room at the bottom. Miniaturization 282 (1961) 295–296Google Scholar
  86. 2.55
    Drexler, K.E.: Nanotechnology summary. Encyclopedia Britannica Science and the Future Yearbook 162 (1990);Google Scholar
  87. Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computation. John Wiley & Sons: New York (1992)Google Scholar
  88. 2.56
    Whitesides, G.M.: The once and future nanomachine. Scientific American 9 (2001) 78–83CrossRefGoogle Scholar
  89. 2.57
    Newkome, G.R. (ed.): Advances in Dendritic Macromolecules. JAI Press: Greenwich, Conn. (1994)Google Scholar
  90. 2.58
    Curl, R.F./Smalley, R.E.: Probing Cho. Science 242 (1988) 1017–1022;Google Scholar
  91. Smalley, R.W.: Great balls of carbon: The story of Buckminsterfullerene. The Sciences 31 (1991) 22–28Google Scholar
  92. 2.59
    Müller, A.: Supramolecular inorganic species: An expedition into a fascinating rather unknown land mesoscopia with interdisciplinary expectations and discoveries, J. Molecular Structure 325 (1994) 24;CrossRefGoogle Scholar
  93. Angewandte Chemie (International Edition in English) 34 (1995) 2122–2124;Google Scholar
  94. Müller, A./Mainzer, K.: From molecular systems to more complex ones. In: Müller, A., Dress, A., Vögtle, F. (Eds.): From Simplicity to Complexity in Chemistry–and Beyond. Vieweg: Wiesbaden (1995) 1–11Google Scholar
  95. 2.60
    Fig. 2.32 with drawings of Bryan Christie: Spektrum der Wissenschaft Spezial 2 (2001) 22Google Scholar
  96. 2.61
    Dry, C.M.: Passive smart materials for sensing and actuation. Journal of Intelligent Materials Systems and Structures 4 (1993) 415CrossRefGoogle Scholar
  97. 2.62
    Amato, I.: Animating the material world. Science 255 (1992) 284–286ADSCrossRefGoogle Scholar
  98. 2.63
    Joy, B.: Why the future doesn’t need us. Wired 4 (2000)Google Scholar
  99. 2.64
    Smalley, R.E.: Of chemistry, love and nanobots. Scientific American 9 (2001) 76–77CrossRefGoogle Scholar
  100. 2.65
    Abarbanel, H.D.I.: Analysis of Observed Data. Springer: New York (1996);MATHCrossRefGoogle Scholar
  101. Kanz, H./Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press: Cambridge (1997)Google Scholar
  102. 2.66
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S. (eds.): Dynamical Systems and Turbulence. Springer: Berlin (1981) 336–381Google Scholar
  103. 2.67
    Kaplan, D./Glass, L.: Understanding Nonlinear Dynamics. Springer: New York (1995) 310 (Fig. 6. 20 )Google Scholar
  104. 2.68
    Kaplan, D./Glass, L.: Understanding Nonlinear Dynamics (see Note 67) 310 (Fig. 6.21), 311 (Fig. 6. 22 )Google Scholar
  105. 2.69
    Kaplan, D./Glass, L.: Understanding Nonlinear Dynamics (see Note 67) 316 (Fig. 6.26), 317 (Fig. 6. 28 )Google Scholar
  106. 2.70
    Grassberger, P./Procaccia I.: Characterization of strange attractors. Physical Review Letters 50 (1983) 346–349MathSciNetADSCrossRefGoogle Scholar
  107. 2.71
    Deco, G./Schürmann, B.: Information Dynamics: Foundations and Applications. Springer: New York (2001) 17 (Fig. 2. 6 )Google Scholar
  108. 2.72
    Chen, G./Moiola, J.L.: An overview of bifurcation, chaos and nonlinear dynamics in control systems. In: Chua, L.O. (ed.): Journal of the Franklin Institute Engineering and Applied Mathematics: Philadelphia (1995) 838Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Klaus Mainzer
    • 1
  1. 1.Lehrstuhl für Philosophie und Wissenschaftstheorie, Institut für Interdisziplinäre InformatikUniversität AugsburgAugsburgGermany

Personalised recommendations