Modified Piezoelectric Surfaces

  • Hubert Perrot
  • Ernesto Calvo
  • Christopher Brett

Abstract

The quartz crystal microbalance (QCM) is turning into an attractive tool for gravimetric measurements and applications and can be found in many research fields such as acoustic sensors (Chap. 2), chemical sensors (Chap. 9) and biosensors (Chap. 10). In general, QCM resonators are covered with noble metals such as gold or silver, usually by evaporation or sputtering, and can be used directly as electrodes or undergo further surface modification. Using such strategies, the study of processes ranging from electroplating to DNA immobilization becomes possible. In this chapter, two separate sequential preparation steps should be distinguished. Metallic deposition (acting as the ultrasonic wave generator) must be first considered as a support for modification. In the second step, organic or biochemical modifications are carried out before testing the modified QCM.

Keywords

Porosity Nickel Quartz Chromium Epoxy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swann S (1988) Phys. Techno., 19 67.CrossRefGoogle Scholar
  2. 2.
    Gabrielli C, Keddam M and Torresi R (1991) J. Electrochem. Soc., 138 2657.Google Scholar
  3. 3.
    Scharifker BR, Garcia-Pastoriza E and MarinoW (1991) J. Electroanal. Chem., 300 85.Google Scholar
  4. 4.
    Etchenique RA and Calvo EJ (1999) Electrochem. Commun., 1 167.CrossRefGoogle Scholar
  5. 5.
    Garcia-Jareno JJ, Gabrielli C and Perrot H (2000) Electrochem. Commun., 2 195.CrossRefGoogle Scholar
  6. 6.
    Nuzzo RG, Dubois LH and Allara DL (1990) J. Am. Chem. Soc., 112 558.Google Scholar
  7. 7.
    Ferrante FF, Kippling AL and Thompson M (1994) J. Appl. Phys., 76 3448.Google Scholar
  8. 8.
    Brett CMA, Kresak S, Hianik T and Oliveira Brett AM (2003) Electroanalysis, 15 557.CrossRefGoogle Scholar
  9. 9.
    Fung YS and Wong YY (2001) Anal. Chem., 73 5302.CrossRefGoogle Scholar
  10. 10.
    Barraud A (1987) British Polymer J., 19 409.Google Scholar
  11. 11.
    Shiratori SS, Kohno K and Yamada M (2000) Sensors and Actuators B, 64 70.CrossRefGoogle Scholar
  12. 12.
    Calvo EJ and Wolosiuk A (2002) J. Am. Chem. Soc., 124 8490.CrossRefGoogle Scholar
  13. 13.
    Calvo EJ, Forzani ES and Otero M (2002) Anal. Chem., 74 3281.CrossRefGoogle Scholar
  14. 14.
    Guilbault GG, Hock B and Schmid R (1992) Biosens. Bioelectron., 7 411.CrossRefGoogle Scholar
  15. 15.
    Bizet K, Gabrielli C and Perrot H (2000) Appl. Biochem. Biotechnol., 89 139.Google Scholar
  16. 16.
    Cosnier S, Perrot H and Wessel R (2001) Electroanalysis, 13 971.CrossRefGoogle Scholar
  17. 17.
    Okahata Y, Matsunobu Y, Ijiro K, Mukae M, Akira M and Makion M (1992) J. Am. Chem. Soc. 114 8299.Google Scholar
  18. 18.
    Caruso F, Rodda E and Furlong DN (1997) Anal. Chem., 69 2043.Google Scholar
  19. 19.
    Dupont-Filliard A, Roget A, Livache T and Billon M (2001) Anal. Chim. Acta, 449 45.Google Scholar
  20. 20.
    Willner I, Patolsky F, Weizmann Y and Willner B (2002) Talanta, 56 847.CrossRefGoogle Scholar
  21. 21.
    Zhou XC, Huang LQ and Yau Li SF (2001) Biosens. Bioelectron., 16 85.CrossRefGoogle Scholar
  22. 22.
    Tombelli S, Mascini M and Turner APF (2002) Biosens. Bioelectron., 17 929.CrossRefGoogle Scholar
  23. 23.
    Cheng Q and Brajter-Toth A (1992) Anal. Chem., 64 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hubert Perrot
    • 1
  • Ernesto Calvo
    • 2
  • Christopher Brett
    • 3
  1. 1.Laboratoire Interface et Systèmes ElectrochimiquesUniversité P. et M. CurieFrance
  2. 2.Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresArgentina
  3. 3.Departamento de QuímicaUniversidade de CoimbraPortugal

Personalised recommendations