Advertisement

Models for Resonant Sensors

  • Ralf Lucklum
  • David Soares
  • Kay Kanazawa

Abstract

The quartz crystal resonator (QCR), as its acronym implies, is a resonant physical device. Many of its behaviors and properties can be understood physically by examining its resonant behavior. The basic principle of operation for a generic acoustic-wave sensor is a traveling wave combined with a confinement structure to produce a standing wave whose frequency is determined jointly by the velocity of the traveling wave and the dimensions of the confinement structure. The most basic way of resonator modeling consequently requires applying the theory of wave propagation whereby considering material properties and geometric dimensions of the resonator. As another successful way, there is an electrical equivalent circuit often used to characterize the resonance. For these reasons, a closer inspection of the phenomenon of resonance is useful.

Keywords

Acoustic Wave Quartz Crystal Transmission Line Model Acoustic Wave Propagation Quartz Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.D. Mindlin, “High frequency vibrations of plated crystal plates”, Progr. Appl. Mech., (1963), 73 – 84.Google Scholar
  2. 2.
    H. Tiersten, “Linear piezoelectric plate vibrations”, Plenum Press, New York, 1969.Google Scholar
  3. 3.
    C.E. Reed, K.K. Kanazawa, and J.H. Kaufmann, “Physical description of a viscoelastically loaded AT-cut quartz resonator,” J. Appl. Phys., 68 (1990), 1993 – 2001.CrossRefGoogle Scholar
  4. 4.
    G.S. Kino, “Acoustic Waves: Devices, Imaging and Analog Signal Processing”, Englewood Cliffs, N.J.: Prentice-Hall, 1987.Google Scholar
  5. 5.
    H. Nowotny and E. Benes, “General one-dimensional treatment of the layered piezoelectric resonator with two electrodes,” J. Acoust. Soc. Am., 82 (1987), 513 – 521. C. Behling, “The non-gravimetric response of thickness shear mode resonators for sensor applications” ShakerVerlag, Aachen (1999)Google Scholar
  6. 6.
    R. Krimholtz, D.A. Leedom, and G.L. Matthaei, “New equivalent circuits for elementary piezoelectric transducers,” Electron. Lett., 6 (1970), 398 – 99.CrossRefGoogle Scholar
  7. 7.
    R. Lucklum, C. Behling, R.W. Cernosek, and S.J. Martin, “Determination of complex shear modulus with thickness shear mode resonators,” J. Phys. D. Appl. Phys., 30 (1997), 346 – 356.CrossRefGoogle Scholar
  8. 8.
    C. Behling, R. Lucklum, and P. Hauptmann, “Possibilities and limitations in quantitative determination of polymer shear parameters by TSM resonators,” Sensors and Actuators, A 61 (1997), 260 – 266.Google Scholar
  9. 9.
    C. Behling, R. Lucklum, and P. Hauptmann, “The non-gravimetric quartz crystal resonator response and its application for polymer shear moduli determination,” Meas. Sci. Technol., 9 (1998), 1886 – 1893.CrossRefGoogle Scholar
  10. 10.
    R. Lucklum, C. Behling, and P. Hauptmann, “Role of mass accumulation and viscoelastic film properties for the response of acoustic-wave-based chemical sensors,” Anal. Chem., 71 (1999), 2488 – 2496.CrossRefGoogle Scholar
  11. 11.
    S.J. Martin, G.C. Frye, S.D. Senturia (1994), “Dynamics and Response of Polymer-Coated Surface Acoustic Wave Devices: Effect of Viscoelastic Properties and Film Resonance”, Anal. Chem 66, pp. 2201 – 2219.CrossRefGoogle Scholar
  12. 12.
    G. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Zeitschri Physik, 155 (1955), 206 – 212.CrossRefGoogle Scholar
  13. 13.
    K.K. Kanazawa and J.G. Gordon, “Frequency of a quartz microbalance in contact with liquid,” Anal. Chem., 57 (1985), 1770 – 1771.CrossRefGoogle Scholar
  14. 14.
    S.J. Martin, V. E. Granstaff, G.C. Frye, Characterization of a quartz crystal microbalancewith simultaneous mass and liquid loading, Anal. Chem. 63 (1991), 2272 – 2281.CrossRefGoogle Scholar
  15. 15.
    R. Lucklum, P. Hauptmann, “The quartz crystal microbalance: Mass sensitivity, viscoelasticity and acoustic amplification”, Sensors Actuators B 70/1-3 (2000), 30 – 36.Google Scholar
  16. 16.
    M.V. Voinova, M. Jonson, B. Kasemo, “‘Missing mass’ effect in biosensor’s QCM application”, Biosensors Bioelectronics 17 (2002), 835 – 841.CrossRefGoogle Scholar
  17. 17.
    R. Lucklum, P. Hauptmann, “Transduction meachanism of acoustic-wave based chemical and biochemical sensors”, Meas. Sci. Techn. (2003), 1854–1864Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ralf Lucklum
    • 1
  • David Soares
    • 2
  • Kay Kanazawa
    • 3
  1. 1.Institute for Micro and Sensor SystemsOtto-von-Güericke-University MagdeburgGermany
  2. 2.Institute de FisicaUniversidade de CampinasBrazil
  3. 3.Department of Chemical EngineeringStanford UniversityUSA

Personalised recommendations