Advertisement

Combination of Quartz Crystal Microbalance with other Techniques

  • Ernesto Calvo
  • Kay Kanazawa

Abstract

As implied by its acronym, the quartz crystal microbalance was first used to determine the mass of material deposited on its surface. A heuristic description of the linear relation between the change in its resonant frequency Δf, from its unloaded resonant frequency f 0 , and the mass density, m’, was recognized by Sauerbrey [1] and led to the now standard use of the QCM to measure mass deposition.

Keywords

Surface Plasmon Resonance Quartz Crystal Microbalance Protein Film Electrochemical Quartz Crystal Microbalance Refractive Index Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sauerbrey G (1959) Z. Phys. 155: 202Google Scholar
  2. 2.
    Lu C., Lewis 0 (1972) J. Appl. Phys. 43: 4385.Google Scholar
  3. 3.
    Reed C.E. et al. (1985) Anal. Chem. 57: 1770.CrossRefGoogle Scholar
  4. 4.
    Bruckenstein S. and Shay M (1985) Electrochim. Acta 30: 1295.CrossRefGoogle Scholar
  5. 5.
    Calvo E.J. et al. Layered protein films: quartz crystal resonator frequency and admittance analysis In Rusling J (Ed) (2003) Biomolecular Films: Design, Function and Applications, Marcel Dekker, Inc.Google Scholar
  6. 6.
    Bard A.J. and Faulkner L.R (2001) Electrochemical Methods. Fundamentals and Applications, 2nd. Ed. John Wiley and Sons, New York.Google Scholar
  7. 7.
    Calvo E.J. and Etchenique R.A. Kinetic applications of the electrochemical quartz crystal microbalance (EQCM) In Compton R.G. and Hancock G. (Eds) (1999) Comprehensive Chemical Kinetics, Ch. 12, pp.461–487. Elsevier, Amsterdam.Google Scholar
  8. 8.
    Forzani E.S. et al. (2002) Langmuir 18: 4020.CrossRefGoogle Scholar
  9. 9.
    Hinsberg W.D., Kanazawa K.K. (2002) Anal. Chem. 74 (1): 125.CrossRefGoogle Scholar
  10. 10.
    Borovsky, B. et al. (2000) J. Appl. Phys. 88: 4017.Google Scholar
  11. 11.
    Borovsky, B. et al. (2001) J. Appl. Phys. 90: 6391Google Scholar
  12. 12.
    Bailey, L.E. et al. (2001) Langmuir, 17: 8145CrossRefGoogle Scholar
  13. 13.
    Korobov M. V. et al. (1999) J. Phys. Chem. B. 103 (8): 1339CrossRefGoogle Scholar
  14. 14.
    Azzam R. M. A. and Bashara, N. H. (1977) Ellipsometry and polarized light. North-Holland, Amsterdam.Google Scholar
  15. 15.
    Gottesfeld, S. et al. Recent Applications of Ellipsometry and Spectroellipsometry in Electrochemical Systems In Rubinstein, I. (1995). Physical Electro-chemistry: Principles, methods and applications. Marcel Dekker. New York.Google Scholar
  16. 16.
    Arwin, H (2000) Thin Solid Films. 48: 377Google Scholar
  17. 17.
    Hook F. et al. (2001) Anal. Chem. 73: 5796.CrossRefGoogle Scholar
  18. 18.
    Domack A. and Johannsmann D. (1998) J. Appl. Phys. 83 (3): 1286.CrossRefGoogle Scholar
  19. 19.
    Bailey L.E. et al. (2002) Langmuir 18 (2): 479.CrossRefGoogle Scholar
  20. 20.
    Gabai R. et al. (2001) Phys. Chem. B. 105 (34): 8196.CrossRefGoogle Scholar
  21. 21.
    Liu H.Y.et aí. (1986) Am. Chem. Soc. 108: 3838CrossRefGoogle Scholar
  22. 22.
    Bard A.J. et al. (1989) Anal. Chem., 61: 1221CrossRefGoogle Scholar
  23. 23.
    Zhou F. et al. (1997) J. Electrochem. Soc. 144: 1957.CrossRefGoogle Scholar
  24. 24.
    De Wit J. W. H. et al. (1989), Electrochemical Methods In Corrosion Research VI, Pt. 1 and 2, 289 (2): 69.Google Scholar
  25. 25.
    Stratmann M. et al. (1994) Electrochim. Acta 39: 1207.CrossRefGoogle Scholar
  26. 26.
    Lohrengel M.M. et al. (2000) J. Anal. Chem. 367: 334.CrossRefGoogle Scholar
  27. 27.
    Suter T. and Böhni (1997) Electrochim. Acta 42: 3275.CrossRefGoogle Scholar
  28. 28.
    MacPherson J. V. et al. (Eds) (2001) Scanning Electrochemical Microscopy, Marcell Dekker Inc. New York.Google Scholar
  29. 29.
    Horrocks R. H. et al. (1993) Anal. Chem. 65: 3605.CrossRefGoogle Scholar
  30. 30.
    Ballesteros B. et al. (2002) Electrochemistry Comm., 4: 134CrossRefGoogle Scholar
  31. 31.
    Horrocks B.R. et al (1993) Anal. Chem. 65: 1213CrossRefGoogle Scholar
  32. 32.
    Wei C. et al. (1995) Anal. Chem. 67: 34CrossRefGoogle Scholar
  33. 33.
    Kwak J. and Bard A.J (1989) Anal. Chem. 61: 1221CrossRefGoogle Scholar
  34. 34.
    Ludwig, C. et al. (1995) Rev. Sci. Instr. 66: 2857–2860.Google Scholar
  35. 35.
    Shi, L.F. et al. (1998) J. Electrochem. Soc. 145: 2011Google Scholar
  36. 36.
    Kranz C. et al. (1996) Adv. Mater. 8: 634CrossRefGoogle Scholar
  37. 37.
    Hengstenberg A. et al. (2000) Chemistry - A European Journal. 6: 1547CrossRefGoogle Scholar
  38. 38.
    Hengstenberg A. et al. (2001) Angew. Chem. Int. Ed. Engl. 40:905Google Scholar
  39. 39.
    Bard, A. J. et al (1994) Electroanalytical Chemistry. 18: 243Google Scholar
  40. 40.
    Mirkin, M. V. (1996) Anal. Chem. 68:177A. (1995) 91: 4083Google Scholar
  41. 41.
    Hillier, A. C. and Ward, M. D. (1992) Anal. Chem. 64: 2539CrossRefGoogle Scholar
  42. 42.
    Cliffel, D. E. and Bard, A. J (1998) Anal. Chem. 70: 1993Google Scholar
  43. 43.
    Shin, M. and Jeon, I. C. (1998) Bull. Korean Chem. Soc. 19: 1227Google Scholar
  44. 44.
    Gollas B. et al. (2000) Anal. Chem. 72: 349CrossRefGoogle Scholar
  45. 45.
    Calvo, E. J. et al. (1995) J. Chem. Soc., Faraday Trans. 91: 4083.Google Scholar
  46. 46.
    Calvo, E. J. et al. (1997) Faraday Discuss. Chem. Soc. 107: 141Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ernesto Calvo
    • 1
  • Kay Kanazawa
    • 2
  1. 1.Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresArgentina
  2. 2.Department of Chemical EngineeringStanford UniversityUSA

Personalised recommendations