Skip to main content

Nonviral Vectors for Cardiovascular Gene Delivery

  • Conference paper
Human Gene Therapy: Current Opportunities and Future Trends

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 43))

Abstract

The development of artificial gene delivery systems is an attractive problem. The delivery of nucleic acids to cells initially grew out of basic studies in molecular biology and virology but is now mainly considered within the context of gene therapy. This new therapeutic approach promises to be a singular advance in the treatment of both acquired and genetic diseases at the most fundamental levels of pathology. Nucleic acids are transferred into target cells to modify their genetic instructions so as to ameliorate or prevent a disease. Yet, the challenging problem of efficiently transferring and stably expressing transgenes in appropriate tissues needs to be solved in order for the great promise of gene therapy to be realized. One approach, viral vectors, is the basis of most preclinical studies and human clinical trials. Another approach is artificial gene delivery systems that go by a variety of descriptive names such as synthetic delivery systems, physical-chemical methods, and non-viral vectors, each of which emphasize different aspects of the approach. Table 1 lists the types of synthetic delivery methods that are under development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acsadi G, Jiao SS, Jani A et al (1991) Direct gene transfer and expression into rat heart in vivo. New Biol 3: 71–81

    PubMed  CAS  Google Scholar 

  • Baumgartner I, et al (1998) Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97: 1114–1123

    Article  PubMed  CAS  Google Scholar 

  • Benvenisty N, Reshef L (1986) Direct introduction of genes into rats and expression of the genes. Proc Natl Acad Sci U S A 83: 9551–9555

    Article  PubMed  CAS  Google Scholar 

  • Browning J, Hogg N, Gobe G, Cross R (1996) Capillary density in skeletal muscle of Wistar rats as a function of muscle weight and body weight. Microvas Res 52: 281–287

    Article  CAS  Google Scholar 

  • Budker V, Zhang G, Knechtle S, Wolff JA (1996) Naked DNA delivered in-traportally expresses efficiently in hepatocytes. Gene Ther 3: 593–598

    PubMed  CAS  Google Scholar 

  • Budker V, et al (1998) The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther 5: 272–276

    Article  PubMed  CAS  Google Scholar 

  • Budker V, et al (2000) Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process (review). J Gen Med 2: 76–88

    Article  CAS  Google Scholar 

  • Buttrick PM, Kass A, Kitsis RN et al (1992) Behavior of genes directly in-jected into the rat heart in vivo. Circ Res 70: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Campra J, Reynolds T (1988) The hepatic circulation. In: Arias 1, WB J, Popper H, Schachter DShafritz D (eds) The liver: Biology and patholobiology. Raven Press, New York, pp 911–930

    Google Scholar 

  • Chen ZY, et al (2001) Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol Ther 3: 403–410

    Article  PubMed  CAS  Google Scholar 

  • Drabick JJ, Glasspool-Malone J, King A, Malone RW (2001) Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol Ther 3: 249–255

    Article  PubMed  CAS  Google Scholar 

  • Dubensky TW, Campbell BA, Villarreal LP (1984) Direct transfection of viral and plasmid DNA into the liver or spleen of mice. Proc Natl Acad Sci U S A 81: 7529–7533

    Article  PubMed  CAS  Google Scholar 

  • Fraser R, et al (1980) High perfusion pressure damages the sieving ability of sinusoidal endothelium in rat livers. Brit J Exper Pathol 61: 222–228

    CAS  Google Scholar 

  • Gal D, Weir L, Leclerc G et al (1993) Direct myocardial transfection in two animal models. Evaluation of parameters affecting gene expression and per-cutaneous gene delivery. Lab Invest 68: 18–25

    Google Scholar 

  • Gidlof A, Lewis DH, Hammersen F (1988) The effect of prolonged total ischemia on the ultrastructure of human skeletal muscle capillaries. A morphometric analysis. Int J Microcir Clin Exp 7: 67–86

    Google Scholar 

  • Hagstrom JE, et al (1996) Nonnuclear DNA binding proteins in striated muscle. Biochem Molec Med 58: 113–121

    Article  CAS  Google Scholar 

  • Hartikka J, Sukhu L, Buchner C et al (2001) Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: plasmid dependence of muscle damage and effect of poloxamer 188. Mol Ther 4: 407–415

    Article  PubMed  CAS  Google Scholar 

  • Herweijer H, et al (2000) Retrograde coronary venous delivery of naked plasmid DNA. Mol Ther 1: S202

    Google Scholar 

  • Herweijer H, Zhang G, Subbotin VM et al (2001) Time course of gene expres- sion after plasmid DNA gene transfer to the liver. J Gen Med3: 280–291

    Google Scholar 

  • Isner JM, et al (1998) Treatment of thromboangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg 28:964–973; discussion 973–965

    Google Scholar 

  • Jaffe HA, Danel C, Longenecker G et al (1992) Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet 1: 372–378

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Yamato E, Miyazaki J (2001) Intravenous delivery of naked plasmid DNA for in vivo cytokine expression. Biochem Biophys Res Commun 289: 1088–1092

    Article  PubMed  CAS  Google Scholar 

  • Krieg AM, Yi AK, Schorr J, Davis HL (1998) The role of CpG dinucleotides in DNA vaccines. Trends Microbiol 6: 23–27

    Article  PubMed  CAS  Google Scholar 

  • Langowski J, Kremer W, Kapp U(1992) Dynamic light scattering for study of solution conformation and dynamics of superhelical DNA. Methods Enzymol 211: 430–448

    Google Scholar 

  • Leclerc C, Deriaud E, Rojas M, Whalen RG (1997) The preferential induction of a Thl immune response by DNA-based immunization is mediated by the immunostimulatory effect of plasmid DNA. Cell Immunol 179: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Schmid-Schonbein GW (1995) Biomechanics of skeletal muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formation. Ann Biomed Eng 23: 226–246

    Article  PubMed  CAS  Google Scholar 

  • Levy MY, Barron LG, Meyer KB, Szoka FC, Jr (1996) Characterization of plasmid DNA transfer into mouse skeletal muscle: evaluation of uptake mechanism, expression and secretion of gene products into blood. Gene Ther 3: 201–211

    PubMed  CAS  Google Scholar 

  • Lewis DL, et al (2002) Efficient delivery of siRNA and inhibition of gene expression in post-natal mice. Nat Genet32: 107–108

    Google Scholar 

  • Lin H, Parmacek MS, Morle G et al (1990) Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 82: 2217–2221

    Article  PubMed  CAS  Google Scholar 

  • Lipford GB, Heeg K, Wagner H (1998) Bacterial DNA as immune cell activator. Trends Microbiol 6: 496–500

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6: 1258–1266

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Mounkes LC, Liggitt HD et al (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 15: 167–173

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey AP, et al (2002) Gene expression: RNA interference in adult mice. Nature 418: 38–39

    Article  PubMed  CAS  Google Scholar 

  • Mannino RJ, Gould-Fogerite S (1988) Liposome mediated gene transfer. Biotechniques 6: 682–690

    PubMed  CAS  Google Scholar 

  • Maruyama H, Higuchi N, Nishikawa Y et al (2002a) High-level expression of naked DNA delivered to rat liver via tail vein injection. J Gene Med 4: 333–341

    Article  PubMed  CAS  Google Scholar 

  • Maruyama H, et al (2002b) Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Hum Gene Ther 13: 455–468

    Article  PubMed  CAS  Google Scholar 

  • Miao CH, Thompson AR, Loeb K et al (2000) Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 1: 522–532

    Article  PubMed  CAS  Google Scholar 

  • Miao CH, Thompson AR, Loeb K, Ye X (2001) Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther 3: 947–957

    Article  PubMed  CAS  Google Scholar 

  • Neuwelt EA, Rapoport SI (1984) Modification of the blood-brain barrier in the chemotherapy of malignant brain tumors. Fed Proc 43: 214–219

    PubMed  CAS  Google Scholar 

  • Nopanitaya W, Lamb JC, Grisham JW, Carson JL (1976) Effect of hepatic venous outflow obstruction on pores and fenestration in sinusoidal endothelium. Br J Exper Pathol 57: 604–609

    CAS  Google Scholar 

  • Roman M, et al (1997) Immunostimulatory DNA sequences function as T helper-l-promoting adjuvants. Nat Med 3: 849–854

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, Rapoport SI (1987) Size selectivity of blood-brain barrier permeability at various times after osmotic opening. Am J Physiol 253: R459–466

    PubMed  CAS  Google Scholar 

  • Sato Y, et al (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273: 352–354

    Article  PubMed  CAS  Google Scholar 

  • Satkauskas S, Bureau MF, Mahfoudi A, Mir LM (2001) Slow accumulation of plasmid in muscle cells: supporting evidence for a mechanism of DNA uptake by receptor-mediated endocytosis. Mol Ther 4: 317–323

    Article  PubMed  CAS  Google Scholar 

  • Sebestyen MG, et al (1998) DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat Biotechnol 16: 80–85

    Article  PubMed  CAS  Google Scholar 

  • Somiari S, Glasspool-Malone J, Drabick JJ et al (2000) Theory and in vivo application of electroporative gene delivery. Mol Ther 2: 178–187

    Article  PubMed  CAS  Google Scholar 

  • Taylor AE, Granger DN (1984) Exchange of macromolecules across the microcirculation. In: Renkin EM, Michel CCGeiger SR (eds) Handbook of Physiology: The cardiovascular system. Microcirculation. Am Physiol Soc, Bethesda, pp 467–653

    Google Scholar 

  • Terada Y, Tanaka H, Okado T et al (2001) Efficient and ligand-dependent regulated erythropoietin production by naked DNA injection and in vivo electroporation. Am J Kidney Dis 38: S50–53

    Article  PubMed  CAS  Google Scholar 

  • Vilquin JT, Kennel PF, Paturneau-Jouas M et al (2001) Electrotransfer of naked DNA in the skeletal muscles of animal models of muscular dystrophies. Gene Ther 8: 1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Vologodskii AV, Cozzarelli NR (1994) Conformational and thermodynamic properties of supercoiled DNA. Annu Rev Biophys Biomol Struct 23: 609–643

    Article  PubMed  CAS  Google Scholar 

  • Wolff JA, Malone RW, Williams P et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247: 1456–1468

    Article  Google Scholar 

  • Wolff JA, et al (1992) Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle. J Cell Sci 103: 1249–1259

    PubMed  CAS  Google Scholar 

  • Wolff JA, Lederberg J (1994) An early history of gene transfer and therapy. Hum Gene Ther 5: 469–480

    Article  PubMed  CAS  Google Scholar 

  • Yew NS, et al (2001) High and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter. Mol Ther 4: 75–82

    Article  PubMed  CAS  Google Scholar 

  • Yew NS, et al (2002) CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 5: 731–738

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Vargo D, Budker V et al (1997) Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers. Hum. Gene Ther 8: 1763–1772

    Google Scholar 

  • Zhang G, Budker V, Wolff JA (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gen Ther 10: 1735–1737

    Article  CAS  Google Scholar 

  • Zhang G, et al (2001) Efficient expression of naked DNA delivered intraarteri-ally to limb muscles of nonhuman primates. Hum Gene Ther 12: 427–438

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, et al (2002) Surgical procedures for intravascular delivery of plasmid DNA to organs. Methods Enzymol 346: 125–133

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wolff, J.A., Herweijer, H. (2003). Nonviral Vectors for Cardiovascular Gene Delivery. In: Rubanyi, G.M., Ylä-Herttuala, S. (eds) Human Gene Therapy: Current Opportunities and Future Trends. Ernst Schering Research Foundation Workshop, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05352-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05352-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05354-6

  • Online ISBN: 978-3-662-05352-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics