Skip to main content

Lentivirus: A Vector for Nervous System Applications

  • Conference paper
Human Gene Therapy: Current Opportunities and Future Trends

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 43))

Abstract

Vectors based on lentiviruses are opening up new approaches for the treatment of neurological disease and damage. They efficiently deliver genes into many different types of primary neurons from a broad range of species including human, and the resulting gene expression is longterm and non-toxic. Numerous animal studies have now been undertaken with these vectors, and correction of disease models has been obtained. These vectors have been refined to a very high level, and they are now ready for clinical evaluation (reviewed in Martin-Rendon et al. 2001; Deglon and Aebischer 2002). This review will describe the general features of lentiviral vectors with particular emphasis on vectors derived from the non-primate lentivirus, equine infectious anaemia virus (EIAV), then give some key examples of gene transfer and genetic correction in animal models of neurological diseases. The prospects for the clinical evaluation of lentiviral vectors for the treatment of human neurological disease will be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azzouz M, Martin-Rendon E, Barber RD et al (2002) Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neuro 22: 10302–10312

    CAS  Google Scholar 

  • Brooks AI, Stein CS, Hughes SM et al (2002) Functional correction of established central nervous system deficits in an animal model of lysomal storage disease with feline immunodeficiency virus-based vectors. Proc Natl Acad Sci USA 99: 6216–6221

    Article  PubMed  CAS  Google Scholar 

  • Chavany C, Jendoubi M (1998) Biology and potential strategies for the treatment of GM2 gangliosidoses. Mol Med Today 4: 158–165

    Article  PubMed  CAS  Google Scholar 

  • Cisterni C, Henderson CE, Aebischer P et al (2000) Efficient gene transfer and expression of biologically active glial cell line-derived neurotrophic factor in rat motor neurons transduced with lentiviral vectors. J Neurochem 74: 1820–1828

    Article  PubMed  CAS  Google Scholar 

  • Corcoran J, So P-L, Barber RD, et al (2002) Retinoic acid receptor-I32 and neurite outgrowth in the adult mouse spinal cord. J Cell Sci 115: 3779–3786

    Article  PubMed  CAS  Google Scholar 

  • de Almeida LP, Ross CA, Zala D et al (2002) Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J Neurosci 22: 3473–3483

    PubMed  Google Scholar 

  • Deglon N, Aebischer P (2002) Lentiviruses as vectors for CNS diseases. Curr Top Microbiol Immunol 261: 191–209

    Article  PubMed  CAS  Google Scholar 

  • Desmaris N, Bosch A, Salvan C et al (2001) Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol Ther 4: 149–156

    Article  PubMed  CAS  Google Scholar 

  • Fleming J, Ginn SL, Weinberger RP et al (2001) Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons. Hum Gene Ther 12: 77–86

    Article  PubMed  CAS  Google Scholar 

  • Gurney M, Pu H, Chiu AY et al (1994) Motor neuron degeneration in mice that express a human Cu,ZN superoxide dismutase mutation. Science 264: 1772–1775

    Article  PubMed  CAS  Google Scholar 

  • Han JJ, Mhatre AN, Wareing M et al (1999) Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum Gene Ther 10: 1867–1873

    Article  PubMed  CAS  Google Scholar 

  • Hottinger AF, Azzouz M, Deglon N et al (2000) Complete and long-term rescue of lesioned adult motor neurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus. J Neurosci 20: 5587–5593

    PubMed  CAS  Google Scholar 

  • Johnston JC, Gasmi M, Lim LE et al (1999) Minimum requirement for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 73: 4991–5000

    PubMed  CAS  Google Scholar 

  • Kafri T, Van Praag H, Ouyang L et al (1999) A packaging cell line for lentivirus vectors. J Virol 73: 576–584

    PubMed  CAS  Google Scholar 

  • Kang Y, Stein CS, Heth JA et al (2002) In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River virus glycoproteins. J Virol 76: 9378–9388

    Article  PubMed  CAS  Google Scholar 

  • Kim VN, Mitrophanous K, Kingsman SM et al (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type J Virol 72: 811–816

    CAS  Google Scholar 

  • Kobinger GP, Weiner DJ, Yu QC et al (2001) Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 19: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290: 767–773

    Article  PubMed  CAS  Google Scholar 

  • Kotsopoulou E, Kim VN, Kingsman AJK et al (2000) A rev-independent human immunodeficiency virus type-1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag/pol gene. J Virol 74: 4839–4852

    Article  PubMed  CAS  Google Scholar 

  • Lewis P, Hensel M, Emerman N et al (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 11: 3053–3058

    PubMed  CAS  Google Scholar 

  • Lo Bianco C, Ridet JL, Schneider BL et al (2002) a-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci USA 99: 10813–10818

    Google Scholar 

  • Martin-Rendon E, White LJ, Olsen A et al (2002) New methods for titering EIAV lentiviral vectors. Mol Ther 5: 566–570

    Article  PubMed  CAS  Google Scholar 

  • Martin-Rendon E, Azzouz M, Mazarakis ND et al (2001) Lentiviral vectors for the treatment of neurodegenerative diseases. Cuff Opin Mol Ther 3: 476–481

    Article  CAS  Google Scholar 

  • Mazarakis ND, Azzouz M, Rohll JB et al (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 10: 2109–2121

    Article  PubMed  CAS  Google Scholar 

  • Miller AD (1997) Development and applications of retroviral vectors. In Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Press, New York, pp 437–473

    Google Scholar 

  • Mitrophanous K, Yoon S, Rohll J et al (1999) Stable gene transfer to the nervous system using a nonprimate lentiviral vector. Gene Ther 6: 1808–1818

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Blomer U, Takahashi M et al (1998) Development of a self-inactivating lentivirus vector. J Virol 72: 8150–8157

    PubMed  CAS  Google Scholar 

  • Monani UR, Coovert DD, Burghes AH et al (2000) Animal models of spinal muscular atrophy. Hum Mol Gen 9: 2451–2457

    Article  PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Olsen JC (1998) Gene transfer vectors derived from equine infectious anemia virus. Gene Ther 5: 1481–1487

    Article  PubMed  CAS  Google Scholar 

  • Otto E, Jones-Trower A, Vanin EF et al (1994) Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis. J Virol 68: 4241–4250

    Google Scholar 

  • Palfi S, Leventhal L, Chu Y et al (2002) Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 22: 4942–4954

    PubMed  CAS  Google Scholar 

  • Patel CA, Mukhtar M, Harley S et al (2002) Lentiviral expression of HIV-1 Vpr induces apoptosis in human neurons. J Neurovirol 2: 86–99

    Article  Google Scholar 

  • Pfeifer A, Brandon EP, Kootstra N et al (2001) Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci USA 98: 11450–11455

    Article  PubMed  CAS  Google Scholar 

  • Poeschla EM, Wong-Staal F, Looney DJ et al (1998) Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 4: 354–357

    Article  PubMed  CAS  Google Scholar 

  • Powell JS et al (2001) Phase I trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous injection. Thromb Haemost 86:0C2489

    Google Scholar 

  • Reiser J (2000) Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther 7: 910–913

    Article  PubMed  CAS  Google Scholar 

  • Rohl JB et al (2002) The design, production, safety, evaluation and clinical applications of nonprimate lentiviral vectors. Methods Enzymol 346: 466–500

    Article  Google Scholar 

  • Rojas M, Donahue JP Tan Z et al (1998) Genetic engineering of proteins with cell membrane permeability. Nat Biotechnol 16: 370–375

    Article  PubMed  CAS  Google Scholar 

  • Sinnayah P, Lindley TE, Staber PD et al (2002) Selective gene transfer to key cardiovascular regions of the brain: comparison of two viral vector systems. Hypertension 39: 603–608

    Article  PubMed  CAS  Google Scholar 

  • Stitz J, Buchholz CJ, Engelstadter M et al (2000) Lentiviral vectors pseudo-typed with envelope glycoprotein derived from gibbon ape leukaemia virus and murine leukaemia virus 10A1. Virology 273: 16–20

    Article  PubMed  CAS  Google Scholar 

  • Stitz J, Muhlebach MD, Blomer U et al (2001) A novel lentivirus vector derived from apathogenic simian immunodeficiency virus. Virology 291: 191–197

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Miyoshi H, Verma IM et al (1999) Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Viro! 73: 7812–7816

    PubMed  CAS  Google Scholar 

  • Trono D (1998) When accessories turn out to be essential. Nat Med 4: 1368–1369

    Article  PubMed  CAS  Google Scholar 

  • Trono D (2000) Lentiviral vectors: Turning a deadly foe into a therapeutic agent. Gene Ther 7: 20–23

    Article  PubMed  CAS  Google Scholar 

  • Watson DJ, Kobinger GP, Passini MA et al (2002) Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 5: 528–537

    Google Scholar 

  • Weber E, Anderson WF, Kasahara N et al (2001) Recent advances in retrovirus vector-mediated gene therapy: teaching an old vector new tricks. Curr Opin Mol Ther 5: 439–453

    Google Scholar 

  • Xia H, Mao O, Davidson BL et al (2001) The HIV Tat protein transduction domain improves the biodistribution of 13-glucuronidase expressed from recombinant viral vectors. Nat Biotech 19: 640–644

    Article  CAS  Google Scholar 

  • Xu K, Ma H, McCown TJ et al (2001) Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol Ther 1: 97–104

    Article  Google Scholar 

  • Zennou V, Serguero C, Sarkis C et al (2001) The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat Biotechnol 19: 446–450

    Article  PubMed  CAS  Google Scholar 

  • Zufferey R, Dull T, Mandel RJ et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72: 9873–9880

    PubMed  CAS  Google Scholar 

  • Zufferey R, Donello JE, Trono D et al (1999) Woodchuck hepatitis virus post-transcriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73: 2886–2892

    PubMed  CAS  Google Scholar 

Note added in press

  • Bienemann AS, Martin-Rendon E, Cosgrave AS et al. (2003) Long-term replacement of a mutated nonfunctional CNS gene: reversal of hypothalamic diabetes insipidus using an EIAV-based lentiviral vector expressing arginine vasopressin. Mol Ther 7: 588–596

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kingsman, S.M. (2003). Lentivirus: A Vector for Nervous System Applications. In: Rubanyi, G.M., Ylä-Herttuala, S. (eds) Human Gene Therapy: Current Opportunities and Future Trends. Ernst Schering Research Foundation Workshop, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05352-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05352-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05354-6

  • Online ISBN: 978-3-662-05352-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics