Skip to main content

Abstract

This chapter uses the structure graph to describe the direct interactions among the signals. This graph is used to analyse the redundancies which can be exploited for fault diagnosis and control reconfiguration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  1. A. L. Dulmage and N. S. Mendelsohn. Covering of bi-partite graphs. Canada J. Math, 10: 517–534, 1958.

    Article  Google Scholar 

  2. A. L. Dulmage and N. S. Mendelsohn. A structure theory of bi-partite graphs of finite exterior dimension. Trans. of Royal Soc. Canada, Section III, 53: 1–13, 1959.

    Google Scholar 

  3. J. Edmonds. Paths, trees and flowers. Canad. J. of Math, 17: 449–467, 1965.

    Article  Google Scholar 

  4. J. E. Hoperoft and R. M. Karp. An algorithm for maximum matchings in bipartite graphs. S. I. A. M. J. Comp, 2: 225–231, 1973.

    Google Scholar 

  5. H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly2:83–97, 1956

    Google Scholar 

  6. L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canad. J. Math, 8: 399–404, 1956.

    Article  Google Scholar 

  7. L. R. Ford and D. R. Fulkerson. A simple algorithm for finding maximal network flows and an application to the hitchcock problem. Canad. J. Math, 9: 210–218, 1957.

    Article  Google Scholar 

  8. C. Berge. Two Theorems in Graph Theory. Princeton University, 1957.

    Google Scholar 

  9. M. Gondran and M. Minoux. Graphes et algorithmes. Coll. Direction des Etudes et Recherches EDF Eyrolles (3rd edition)(3d edition), 1995

    Google Scholar 

  10. G. Chartrand and O. R. Oellermann. Applied and algorithmic graph theory. Pure and applied mathematics. McGraw-Hill Inc., 1993.

    Google Scholar 

  11. D. V. Steward. On an approach to techniques for the analysis of the structure of large systems of equations. SIAM Review, 4: 321–342, 1962.

    Article  Google Scholar 

  12. F. Harary. A graph theoretic approach to matrix inversion by partitioning Nu-mer. Math.4:128–135, 1962

    Google Scholar 

  13. C. T. Lin. Structural controllability. IEEE Trans. AC, AC-19, 3:201–208, 1974

    Google Scholar 

  14. C. T. Lin. System structure and minimal structure controllability.IEEE Trans.AC-22(5):855–862, 1977

    Google Scholar 

  15. K. Golver and L. M. Silverman. Characterisation of structural controllability IEEE Trans. AC AC-214:534–537, 1976

    Google Scholar 

  16. K. Murota. Systems analysis by graphs and matroïds. Structural solvability and controllability. Springer Verlag 1987

    Google Scholar 

  17. C. Schizas and F. J. Evans. A graph theoretic approach to multivariables control system design. Automatica, 17 (2): 371–377, 1981.

    Article  Google Scholar 

  18. K. J. Reinschke. Multivariable Control: A Graph Theoretic Approach. Springer-Verlag, 1988.

    Google Scholar 

  19. A. Georgiou and C. A. Floudas. Structural analysis and synthesis of feasible control systems: Theory and applications. Chemical Engineering Research and Design, 67: 600–618, 1989.

    CAS  Google Scholar 

  20. X. Lin, M. O. Tade and R. B. Newell. Output structural controllability condition for the synthesis of control systems for chemical processes. Int. J. Systems Sci, 22: 107–132, 1991.

    Article  Google Scholar 

  21. M. Morari and G. Stephanopoulos. Studies in the synthesis of control structures for chemical processes. Part ii: Structural aspects and the synthesis of alternative feasible control. AIChE Journal, 40(2): 232–246, 1980.

    Google Scholar 

  22. J. Unger, A. Kröner and W. Marquardt. Structural analysis of differential-algebraic equation systems–theory and applications. Computers and Chemical Engineering, 19 (8): 867–882, 1995.

    Article  CAS  Google Scholar 

  23. A. Leitold and K. M. Hangos. Structural solvability analysis of dynamic process models. Computers and Chemical Engineering, 25: 1633–1646, 2001.

    Article  CAS  Google Scholar 

  24. M. Staroswiecki and P. Declerck. Analytical redundancy in non-linear interconnected systems by means of structural analysis. IFAC/IMACS/IFORS Conf. AIPAC’ 89, Nancy, France, 1989.

    Google Scholar 

  25. P. Declerck and M. Staroswiecki. Characterisation of the canonical components of a structural graph for fault detection in large scale industrial plants Proc. European Control ConferenceGrenoble 1991

    Google Scholar 

  26. J. Gertler and D. Singer. A new structural framework for parity space equation based failure detection and isolation. Automatica, 26: 381–388, 1990.

    Article  Google Scholar 

  27. M. -0. Cordier, P. Dague, F. Lévy, M. Dumas, J. Montmain, M. Staroswiecki, and L. Travé-Massuyès. AI and automatic control approaches of model-based diagnosis: links and underlying hypothesis. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, pp. 274–279, Budapest 2000.

    Google Scholar 

  28. M. Staroswiecki, J. P. Cassar and P. Declerck. A structural framework for the design of FDI in large scale industrial plants. In [150].

    Google Scholar 

  29. R. Izadi-Zamanabadi, P. Amann, M. Blanke, V. Cocquempot, G. L. Gissinger, E. C. Kerrigan, T. F. Lootsma, J. M. Perronne and G. Schreier. Ship propulsion control and reconfiguration in [3], pp. 285–315.

    Google Scholar 

  30. Y. Iwasaki and H. A. Simon. Causality in device behaviour.Artificial Intelligence29:3–32, 1986

    Google Scholar 

  31. M. Tagina, J. -P. Cassar, G. Dauphin-Tanguy and M. Staroswiecki. Bond-graph models for direct generation of formal fault detection systems. Systems Analysis Modelling and Simulation J, 23: 1–17, 1996.

    Google Scholar 

  32. T. Carpentier, R. Litwak and J. -Ph. Cassar. Criteria for the evaluation of FDI systems - Application to sensors location IFAC Symposium on Fault Detection Supervision and Safety for Technical Processespp. 1083–1088, Hull 1997

    Google Scholar 

  33. M. Meyer, J. -M. Le Lann, B. Koehret and M. Enjalbert. Optimal selection of sensor location on a complex plant using a graph oriented approach Computer Chemical Eng,18:535–540, 1994.

    Google Scholar 

  34. A. L. Gehin, M. Assas and M. Staroswiecki. Structural analysis of system reconfigurability. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, pp. 292–297, Budapest 2000.

    Google Scholar 

  35. M. Staroswiecki, S. Attouche and M. L. Assas. A graphic approach for reconfigurability analysis. 10th Int. Workshop on Principles of Diagnosis, Loch Awe 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M. (2003). Structural analysis. In: Diagnosis and Fault-Tolerant Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05344-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05344-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05346-1

  • Online ISBN: 978-3-662-05344-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics