Application examples

  • Mogens Blanke
  • Michel Kinnaert
  • Jan Lunze
  • Marcel Staroswiecki


This chapter presents four applications that illustrate how the methods developed in the preceeding chapters can be applied under real practical conditions and how they can be combined to get a complete solution of control problems. A three-tank system, a chemical process, a ship propulsion system and a steam generator are considered, each of which have been investigated in detail including experimental results.


Steam Generator Sensor Fault Actuator Fault Shaft Speed Ship Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  1. 3.
    K. J. Aström, P. Albertos, M. Blanke, A. Isidori, R. Sanz and W. Schaufelberger. Control of Complex Systems. Springer Verlag London, 2001.Google Scholar
  2. 117.
    J. Lunze, J. Askari-Marnani and B. Heiming. Controller reconfiguration based on qualitative model: A solution of three-tanks benchmark problem. European Control Conference, Karlsruhe 1999.Google Scholar
  3. 70.
    B. Heiming and J. Lunze. Definition of the three-tank benchmark problem for controller reconfiguration. European Control Conference,Karlsruhe 1999. http://www. ruhr-uni-bochum. de/atp Google Scholar
  4. 166.
    J. Schröder. Modelling, State Observation and Diagnosis of Quantised Systems. Springer-Verlag, Berlin, 2002 Google Scholar
  5. 119.
    J. Lunze and J. Schröder. Process diagnosis based on a discrete-event description Automatisierungstechnik47(8):358–365, 1999 Google Scholar
  6. 118.
    J. Lunze and J. Schröder. Application of qualitative observation and prediction to a neutralisation process. Proceedings of 14th IFAC Congress, Beijing 1999, vol. I, pp. 49–54.Google Scholar
  7. 121.
    J. Lunze and T. Steffen. Rekonfiguration linearer Systeme bei Aktor-and Sensorfehlern. Automatisierungstechnik, 43 (2), 2003.Google Scholar
  8. 122.
    J. Lunze and T. Steffen. Control reconfiguration after sensor and actuator faults IEEE Trans.AC, 2003 (submitted) Google Scholar
  9. 163.
    F. Schiller and J. Schröder. Combining qualitative model-based diagnosis and observation with fault-tolerant systems. AI Communications, 12: 79–98, 1999.Google Scholar
  10. 82.
    R. Izadi-Zamanabadi and M. Blanke. Ship propulsion system as a benchmark for fault-tolerant control. Technical report, Control Engineering Dept., Aalborg University, Denmark 1998.Google Scholar
  11. 83.
    R. Izadi-Zamanabadi and M. Blanke. A ship propulsion system as a benchmark for fault-tolerant control. Control Engineering Practice, 7 (2): 227–239, 1999.CrossRefGoogle Scholar
  12. 13.
    M. Blanke. Ship Propulsion Losses Related to Automatic Steering And Prime Mover Control. PhD thesis, Technical University of Denmark (DTU ), 1981.Google Scholar
  13. 16.
    M. Blanke and J. S. Andersen. On dynamics of large two stroke diesel engines: New results from identification. Proceedings 9th IFAC World Conference, Budapest 1984.Google Scholar
  14. 71.
    D. Herrmann. Qualitative Fehlerdiagnose im Automatennetz am COSY Ship Propulsion Benchmark. Diplomarbeit, TU Hamburg-Harburg, 2000 Google Scholar
  15. 55.
    J. P. Gauthier, H. Hammouri and S. Othman. A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. AC-37: 875–880, 1992.Google Scholar
  16. 144.
    A. W. Ordys. Modeling and Simulation of Power Generation Plants. Springer-Verlag 1994.Google Scholar
  17. 22.
    O. Boumaman, G. Dauphin-Tanguy. Bond graph model of a steam generator process and its environment, 10-th European Simulation Multiconference, Budapest 1996, pp. 238–242.Google Scholar
  18. 194.
    J. Thoma and B. Ould Bouamama. Modelling and simulation in thermal and chemical engineering: A Bond graph approach. Springer-Verlag Berlin, 2000.Google Scholar
  19. 21.
    S. A. Bogh, R. Izadi-Zamanabadi and M. Blanke. Onboard supervisor for the orsted satellite attitude control system Artificial Intelligence and Knowledge Based Systems for Space 5th Workshoppp. 137–152, Noordwijk 1995 Google Scholar
  20. 20.
    S. A. Bogh. Fault Tolerant Control Systems - A Development Method and Real-Life Case Study. PhD thesis, Dept. of Control Eng., Aalborg University, Denmark 1997 Google Scholar
  21. 198.
    C. Thybo and M. Blanke. Industrial cost-benefit assessment for fault-tolerant control systems. Proc. IEE Conference Control, Swansea 1998.Google Scholar
  22. 197.
    C. Thybo. Fault-Tolerant Control of Inverter Controlled Induction Motors, PhD Thesis, Aalborg University 2000.Google Scholar
  23. 84.
    R. Izadi-Zamanabadi. Fault-Tolerant Supervisory Control - System Analysis and Logic Design. PhD thesis, Dept. of Control Eng., Aalborg University, Denmark 1999 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Mogens Blanke
    • 1
  • Michel Kinnaert
    • 2
  • Jan Lunze
    • 3
  • Marcel Staroswiecki
    • 4
  1. 1.Section of Automation at Ørstedt · DTUTechnical University of DenmarkLyngbyDenmark
  2. 2.Service d’Automatique et d’Analyse des SystèmesUniversité Libre de BruxellesBruxellesBelgium
  3. 3.Lehrstuhl für Automatisierungstechnik und ProzessinformatikRuhr-Universität BochumBochumGermany
  4. 4.Ecole Polytechnique Universitaire de LilleUniversité Lille IVilleneuve d’Ascq cedexFrance

Personalised recommendations