Skip to main content

Semiconductors

  • Chapter
Solid-State Physics

Part of the book series: Advanced Texts in Physics ((ADTP))

  • 1781 Accesses

Abstract

In Sect. 9.2 we learned that only a partly filled electronic band can contribute to electric current. Completely filled bands and completely empty bands do not contribute to electrical conductivity and a material which has only completely full and completely empty bands is therefore an insulator. If the distance between the upper edge of the highest filled band (valence band) and the lower edge of the lowest empty band (conduction band) is not too large (e.g.~1 eV), then the finite width of the region over which the Fermi distribution changes rapidly has observable consequences at moderate and high temperatures: A small fraction of the states in the vicinity of the upper edge of the valence band is unoccupied and the corresponding electrons are found in the conduction band. Both these “thermally excited” electrons and the holes that they leave in the valence band can carry electric current. In this case one speaks of a semiconductor. In Fig. 12.1 the differences between a metal, a semiconductor and an insulator are summarized schematically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. Morin, J. P. Maita: Phys. Rev. 96, 29 (1954)

    Google Scholar 

  2. G. Dresselhaus, A. F. Kip, C. Kittel: Phys. Rev. 98, 368 (1955)

    Google Scholar 

  3. XVI.1 K. von Klitzing, G. Dorda, M. Pepper: Phys. Rev. B 28, 4886 (1983)

    Article  Google Scholar 

  4. XVI.2 M.A. Paalonen, D.C. Tsui, A.C. Gossard: Phys. Rev. B 25, 5566 (1982)

    Article  ADS  Google Scholar 

  5. XVI.3 H. Luth: Solid Surfaces, Interfaces and Thin Films (Springer, Berlin Heidelberg 2001) 4th edition, p. 419

    Google Scholar 

  6. XVI.4 M. Janßen, O. Viehweger, U. Fastenrath, J. Hajdu: Introduction to the Theory of the Integer Quantum Hall Effect (VCH, Weinheim 1994 )

    Google Scholar 

  7. XVI.5 B.J. van Wees, H. van Houten, C.W. J. Beenakker, J.W. Williamson, L.P. Kouwenhoyen, D. van der Mare], C.T. Foxon: Phys. Rev. Let. 60, 848 (] 988)

    Google Scholar 

  8. XVI.6 K. Hansen, E. Laegsgaard, I. Stensgaard, F. Besenbacher: Phys. Rev. B56, 2208 (1997)

    Article  Google Scholar 

  9. XVII.1 M.A. Herman, H. Sitter: Molecular Beam Epitaxy, 2nd ed., Springer Ser. Mater. Sci., Vol. 7 ( Springer, Berlin, Heidelberg 1996 )

    Google Scholar 

  10. XVII.2 E.H.C. Parker (Ed.): The Technology and Physics of Molecular Beam Epitaxy ( Plenum, New York 1985 )

    Google Scholar 

  11. XVII.3 A.Y. Cho, K.Y. Cheng: Appl. Phys. Lett. 38, 360 (1981)

    Article  ADS  Google Scholar 

  12. XVII.4 E. Kasper, H.-J. Herzog, H. Dämbkes, Th. Richter: Growth Mode and Interface Structure of MBE Grown SiGe Structures, in Two-Dimensional Systems: Physics and New Devices,ed. by G. Bauer, F. Kuchar, H. Heinrich, Springer Ser. Solid-State Sci., Vol. 67 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  13. XVII.5 Proc. ICMOVPE I, J. Crystal Growth 55 (1981); Proc. ICMOVPE II, J. Crystal Growth 68 (1984) W. Richter: Physics of Metal Organic Chemical Vapour Deposition: Festkörperprobleme 26, 335 (Advances in Solid State Physics 26) ed. by P. Grosse (Vieweg, Braunschweig 1986)

    Google Scholar 

  14. XVII.6 H. Heinecke, E. Veuhoff, N. Pütz, M. Heyen, P. Balk: J. Electron. Mater. 13, 815 (1984)

    Article  ADS  Google Scholar 

  15. XVII.7 C. Plass, H. Heinecke, O. Kayser, H. Lüth, P. Balk: J. Crystal Growth 88, 455 (1988) XVII.8 H. Lüth: in Surf. Science 299 /300, 867 (1994)

    Google Scholar 

Chapter 12

  1. J.R. Chelikowsky, M.L. Cohen: Phys. Rev. B 14, 556 (1976)

    Article  ADS  Google Scholar 

  2. J.H. Reuszer, P. Fischer: Phys. Rev. 135, A1125 (1964)

    Article  ADS  Google Scholar 

  3. E.M. Conwell: Proc. IRE 40, 1327 (1952)

    Article  Google Scholar 

  4. S.M. Sze: Physics of Semiconductor Devices, 2nd edn. ( Wiley, New York 1969 )

    Google Scholar 

  5. B. Gelmont, K. Kim, M. Shur: J. Appl. Phys. 74, 1818 (1993)

    Article  ADS  Google Scholar 

  6. H. Lüth: Solid Surfaces, Interfaces and Thin Films, 4th edn. ( Springer, Berlin Heidelberg 2001 )

    MATH  Google Scholar 

  7. G. Margaritondo, P. Perfetti: The Problem of Heterojunction Band Discontinuities, in Heterojunction Band Discontinuities, Physics and Device Applications, ed. by E Capasso, G. Margaritondo ( North-Holland, Amsterdam 1987 ) p. 59

    Google Scholar 

  8. H. Morkoç: Modulation-doped Al Gal xAs/GaAs Heterostructures, in The Technology and Physics of Molecular Beam Epitaxy, ed. By E.H.C. Parker ( Plenum, New York 1985 ) p. 185

    Google Scholar 

  9. L. Esaki: Compositional Superlattices, in The Technology and Physics of Molecular Beam Epitaxy, ed. by E.H. C. Parker ( Plenum, New York 1985 ) p. 185

    Google Scholar 

  10. A. Förster: Private Mitteilung (ISI, Forschungszentrum Jülich)

    Google Scholar 

  11. H. Heinecke, K. Werner, M. Weyers, H. Lüth, P. Balk: J. Crystal Growth 81, 270 (1987)

    Article  ADS  Google Scholar 

  12. E. Capasso (ed.): Physics of Quantum Electron Devices, Springer Ser. Electron. Photon., Vol. 28 ( Springer, Berlin Heidelberg 1989 )

    Google Scholar 

  13. U. Tietze, Ch. Schenk: Halbleiterschaltungstechnik ( Springer, Berlin Heidelberg 1983 )

    Google Scholar 

  14. K. Schimpf, M. Sommer, M. Horstmann, M. Hollfelder, A. van der Hart, M. Marso, P. Kordos, H. Lüth: IEEE Electron Device Letters 18, 144 (1997)

    Article  ADS  Google Scholar 

  15. H.-M. Mühlhoff. McCaughan: MOS Transistors and Memories, in Handbook of Semiconductors, Vol. 4, ed. by T.S. Moss, C. Hilsum ( North-Holland, Amsterdam 1993 ) p. 265

    Google Scholar 

  16. H. Kressel, D.E. Ackley: Semiconductor Lasers, in Handbook of Semiconductors, Vol. 4, ed. by T.S. Moss, C. Hilsum ( North Holland, Amsterdam 1993 ) p. 725

    Google Scholar 

Further Reading

  • Allan, G., Bastard, G., Boccara, N., Lanoo, M., Voos, M. (eds.): Hetero-junctions and Semiconductor Superlattices ( Springer, Berlin Heidelberg 1986 )

    Google Scholar 

  • Bauer, G., Kuchar, F., Heinrich, H. (eds.): Two-dimensional Systems: Physics and New Devices, Springer Ser. Solid-State Sci., Vol. 67 ( Springer, Berlin Heidelberg 1986 )

    Google Scholar 

  • Brauer, W., Streitwolf, H. W.: Theoretische Grundlagen der Halbleiterphysik ( Akademie-Verlag, Berlin 1976 )

    Google Scholar 

  • Buchreihe: Halbleiter-Elektronik,Bd. 1–20, ed. by W. v. Heywang, R. Müller (Springer, Berlin Heidelberg)

    Google Scholar 

  • Capasso, F., Margaritondo, G. (eds.): Heterojunction Band Discontinuities, Physics and Device Applications ( North-Holland, Amsterdam 1987 )

    Google Scholar 

  • Chang, L.L., Ploog, K. (eds.): Molecular Beam Epitaxy and Heterostructures, NATO ASI Ser. E, No. 87 ( Martinus Nijhoff, Dordrecht 1985 )

    Google Scholar 

  • Kelly, M.J.: Low-Dimensional Semiconductors, Materials, Physics, Technology, Devices ( Clarendon Press, Oxford 1995 )

    Google Scholar 

  • Lanoo, M., Bourgoin, J.: Point Defects in Semiconductors I and II, Springer Ser. Solid-State Sci., Vols. 22, 35 (Springer, Berlin Heidelberg 1981, 1983 )

    Book  Google Scholar 

  • Madelung, O.: Grundlagen der Halbleiterphysik, Heidelberger Taschenbuch, Bd. 71 ( Springer, Berlin Heidelberg 1970 )

    Book  Google Scholar 

  • Nizzoli, F., Rieder, K.-H., Willis, R. F. (eds.): Dynamical Phenomena at Surfaces, Interfaces and Superlattices, Springer Ser. Surf. Sci., Vol. 3 ( Springer, Berlin Heidelberg 1985 )

    Google Scholar 

  • Parker, E. H. C. (ed.): The Technology and Physics of Molecular Beam Epitaxy ( Plenum, New York 1985 )

    Google Scholar 

  • Reggiani, L. (ed.): Hot-Electron Transport in Semiconductors, Topics Appl. Phys., Vol. 58 ( Springer, Berlin Heidelberg 1985 )

    Google Scholar 

  • Seeger, K.: Semiconductor Physics, 4th edn., Springer Ser. Solid-State Sci., Vol. 40 ( Springer, Berlin Heidelberg 1988 )

    Google Scholar 

  • Shklovskii, B., Efros, A. L.: Electronic Properties of Doped Semiconductors, Springer Ser. Solid-State Sci., Vol. 45 ( Springer, Berlin Heidelberg 1984 )

    Google Scholar 

  • Shockley, W.: Electrons and Holes in Semiconductors ( Van Nostrand, Princeton 1950 )

    Google Scholar 

  • Spenke, E.: Elektronische Halbleiter ( Springer, Berlin Heidelberg 1965 )

    Book  Google Scholar 

  • Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. ( Wiley, New York 1969 )

    Google Scholar 

  • Ueta, M., Kanzaki, H., Kobayashi, K., Toyozawa, Y., Hanamura, E.: Excitonic Processes in Solids, Springer Ser. Solid-State Sci., Vol. 60 ( Springer, Berlin Heidelberg 1986 )

    Google Scholar 

  • Yu, P. Y., Cardona, M.: Fundamentals of Semiconductors, 3rd edn. ( Springer, Berlin, Heidelberg 2001 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ibach, H., Lüth, H. (2003). Semiconductors. In: Solid-State Physics. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05342-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05342-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43870-0

  • Online ISBN: 978-3-662-05342-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics