The Impact of Combinatorial Chemistry on Drug Discovery

  • P. H. H. Hermkens
  • G. Müller
Conference paper
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 42)


In the early 1990s, the pharmaceutical industry had to increase its productivity of R&D as a result of market pressures within the health-care sector, which was increasingly emphasizing medical need and patient benefit (pharmaco-economics). This resulted in the “industrialization of discovery” and companies invested heavily in high-throughput technologies such as genomics, screening (HTS), and combinatorial chemistry (CC). The question is, have these techniques delivered the gold nuggets that were promised? In this paper, we will address the impact of CC on drug discovery in the last 10 years. It is focused on progression towards drug candidates rather than being comprehensive. An interim analysis prepared earlier (Adang and Hermkens 2001) is the basis for this paper.


Drug Discovery Virtual Screening Combinatorial Chemistry Lead Optimization Drug Discovery Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adang AEP, Hermkens PHH (2001) The contribution of combinatorial chemis- try to lead generation: an interim analysis. Curr Med Chem 8: 985–998PubMedCrossRefGoogle Scholar
  2. Balkenhohl F, von dem Bussche-Hunnefeld C, Lansk A, Zechel C (1996) Combinatorial synthesis of small organic molecules. Angew Chem Int Ed Engl 35: 2288–2337Google Scholar
  3. Berk SC, Rohrer SP, Degrado SJ, Birzin ET, Mosley RT, Hutchins SM, Pasternak A, Schaeffer JM, Underwood DJ, Chapman KT (1999) A combinatorial approach toward the discovery of non-peptide, subtype-selective somatostatin receptor ligands. J Comb Chem 1: 388–396PubMedCrossRefGoogle Scholar
  4. Bromidge SM, Clarke SE, Gager T, Griffith K, Jeffrey P, Jennings AJ, Joiner GF, King FD, Lovell PJ, Moss SF (2001) Phenyl benzenesulfonides are novel and selective 5-HT6 antagonists: identification of N-(2,5-dibromo-3fluorophenyl)-4-methoxy-3-piperazin-l-ylbenzenesulfonamide (SB-357134). Bioorg Med Chem Lett 11: 55–58PubMedCrossRefGoogle Scholar
  5. Brown AR, Hermkens PHH, Ottenheijm HCJ, Rees DC (1998) Solid phase synthesis. Synlett 817 - 827Google Scholar
  6. Cheng K, Chan WWS, Butler B, Wei L, Smith RG (1993) A novel non-peptidyl growth hormone secretagogue. Horm Res 40: 109–15PubMedCrossRefGoogle Scholar
  7. Crawforth PR, Goodacre S, Maxey R, Bourrain S, Patel S, Marwood R, O’Connor D, Herbert R, Hutson P, Rowley M (2000) 3-(4-Piperidinyl)- and 3-(8-aza-bicyclo[3.2.1]oct-3-y1)-2-phenyl-1H-indoles as bioavailable h5HT2A antagonists. Bioorg Med Chem Lett 10: 2701–2703Google Scholar
  8. Dolle RE (1998) Comprehensive survey of chemical libraries yielding enzyme inhibitors, receptor agonists and antagonists, and other biologically active reagents: 1992 through 1997. Mol Divers 3: 199–233CrossRefGoogle Scholar
  9. Dolle RE (2000) Comprehensive survey of combinatorial library synthesis: 1999. J Comb Chem 2: 383–433PubMedCrossRefGoogle Scholar
  10. Dolle RE (2001) Comprehensive survey of combinatorial library synthesis: 2000. J Comb Chem 3: 484–517CrossRefGoogle Scholar
  11. Dolle RE, Nelson Jr KH (1999) Comprehensive survey of combinatorial library synthesis: 1998. J Comb Chem 1: 235–282PubMedCrossRefGoogle Scholar
  12. Edwards PJ, Gardner M, Mute W, Smith GF, Terrett NK (1999) Applications of combinatorial chemistry to drug design and development. Curr Opin Drug Discov Dev 2: 321–331Google Scholar
  13. Ellingboe JW (1999) Solid-phase synthesis in lead optimization and drug discovery. Curr Opin Drug Discov Dev 2: 350–357Google Scholar
  14. Golebiowski A, Klopfenstein SR, Portlock DE (2001) Lead compounds discovered from libraries. Curr Opin Chem Biol 5: 273–284PubMedCrossRefGoogle Scholar
  15. Green BG, Toney JH, Kozarich JW, Grant SK (2000) Inhibition of bacterial peptide deformylase by biaryl acid analogs. Arch Biochem Biophys 375: 355–358PubMedCrossRefGoogle Scholar
  16. Hague TS, Skillman AG, Lee CE, Habashita H, Gluzman IY, Ewing TJA, Goldberg DE, Kuntz ID, Ellman JA (1999) Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J Med Chem 42: 1428–1440CrossRefGoogle Scholar
  17. Lee CE, Kick EK, Ellman JA (1998) General solid-phase synthesis approach to prepare mechanism-based aspartyl protease inhibitor libraries. Identification of potent cathepsin D inhibitors. J Am Chem Soc 120: 9735–9747Google Scholar
  18. Lee MS, Nakanishi H, Kahn M (1999) Enlistment of combinatorial techniques in drug development. Curr Opin Drug Discov Dev 2: 332–341Google Scholar
  19. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 23: 3–25CrossRefGoogle Scholar
  20. Maloney PR, Parks DJ, Haffner CD, Fivush AM, Chandra G, Plunket KD, Creech KL, Moore LB, Wilson MC (2000) Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem 43: 2971–2974PubMedCrossRefGoogle Scholar
  21. Rohrer SP, Birzin ET, Mosley RT, Berk SC, Hutchins SM, Shen DM, Xiong Y, Hayes EC, Parmar RM, Foor F, Mitra SW, Degrado SJ, Shu M, Klopp JM, Cai SJ, Blake A, Chan WWS, Pasternak A, Yang L, Patchett AA, Smith RG, Chapman K, Schaeffer JM (1998) Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 282: 737–740PubMedCrossRefGoogle Scholar
  22. Souers AJ, Virgilio AA, Schurer SS, Ellman JA, Kogan TP, West HE, Ankener W, Vanderslice P (1998) Novel inhibitors of 4(31 integrin receptor interactions through library synthesis and screening. Bioorg Med Chem Lett 8: 2297–2302PubMedCrossRefGoogle Scholar
  23. Souers AJ, Virgilio AA, Rosenquist SA, Fenuik W, Ellman JA (1999) Identification of a potent heterocyclic ligand to somatostatin receptor subtype 5 by the synthesis and screening of 0-turn mimetic libraries. J Am Chem Soc 121: 1817–1825CrossRefGoogle Scholar
  24. Straten van NCR, Schoonus-Gerritsma GG, Someren van RG, Draayer J, Adang AEP, Timmers CM, Hanssen RGJM, Boeckel van CAA (2002) Chem Biochem 1023–1026Google Scholar
  25. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening-an overview. DDT 3: 160–178Google Scholar
  26. Willoughby CA, Hutchins SM, Rosauer KG, Dhar MJ, Chapman KT, Chicchi GG, Sadowski S, Weinberg DH, Patel S, Malkowitz L, Di Salvo J, Pacholok SG, Cheng K (2002) Combinatorial synthesis of 3-(amidoalkyl) and 3(aminoalkyl)-2-arylindole derivatives: discovery of potent ligands for a variety of G-protein coupled receptors. Bioorg Med Chem Lett 12: 93–96PubMedCrossRefGoogle Scholar
  27. Yang L, Guo L, Pasternak A, Mosley R, Rohrer S, Birzin E, Foor F, Cheng K, Schaeffer J, Patchett AA (1998a) Spiro[1H-indene-1,4’-piperidine] derivatives as potent and selective non-peptide human somatostatin receptor subtype 2 (sst2) agonists. J Med Chem 41: 2175–2179PubMedCrossRefGoogle Scholar
  28. Yang L, Berk SC, Rohrer SP, Mosley RT, Guo L, Underwood DJ, Arison BH, Birzin ET, Hayes EC, Mitra SW, Parmar RM, Cheng K, Wu TJ, Butler BS, Foor F, Pasternak A, Pan Y, Silva M, Freidinger RM, Smith RG, Chapman K, Schaeffer JM, Patchett AA (1998b) Synthesis and biological activities of potent peptidomimetics selective for somatostatin receptor subtype 2. Proc Natl Acad Sci USA 95: 10836–10841PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. H. H. Hermkens
  • G. Müller

There are no affiliations available

Personalised recommendations