Skip to main content

Indexing and Retrieving High Dimensional Visual Features

  • Chapter
Book cover Multimedia Information Retrieval and Management

Part of the book series: Signals and Communication Technology ((SCT))

  • 455 Accesses

Abstract

In this chapter, we review high-dimensional retrieval by examining the chronological evolution of various indexing techniques. We then discuss the R-tree which leads to the development of CSS+-tree. Two important aspects of high dimensional index and retrieval, namely varying distance metrics and dimension reduction are, also discussed and some creative solutions proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S. (1995). Nearest Neighbor Searching and Applications. PhD thesis, Computer Vision Laboratory, University of Maryland, 20742 - 3275.

    Google Scholar 

  2. Bai, X., Xu, G., Jin, J. S., & Kurniawati, R. (1997). Content based retrieval and related techniques. Robot 19: 231 - 240.

    Google Scholar 

  3. Baldi P & Hornik K (1989). Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks; 2: 53 - 58.

    Article  Google Scholar 

  4. Bayer, R. & McCreight, E. (1972). Organization and maintenance of large ordered indexes. Acta Informatica, 1 (3): 173 - 189.

    Article  Google Scholar 

  5. Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger, B. (1990). The R-tree: an efficient and robust access method for points and rectangles. Proceedings of the ACM SIGMOD Int. Conf. on Management of Data, pp. 322 - 331.

    Google Scholar 

  6. Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18 (9): 509 - 517.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bentley, J. L. & Stanat, D. F. (1975). Analysis of range searches in quad trees. Information Processing Letters, 3 (6): 170 - 173.

    Article  MathSciNet  MATH  Google Scholar 

  8. Berchtold, S. & Keim, D. A. (1998). Indexing high-dimensional space: database support for next decade’s applications. In ACM-SIGMOD’98 Tutorial,Seattle, Washington. ACM.

    Google Scholar 

  9. Berchtold, S., Böhm, C., & Kriegel, H.-P. (1998). The pyramid-tree: Breaking the curse of dimensionality. Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 78 - 86, Seattle, Washington.

    Google Scholar 

  10. Berchtold, S., Keim, D. A., & Kriegel, H.-P. (1996). The X-tree: An index structure for high-dimensional data. Proc. 22th Int. Conf. on Very Large Data Bases, pages 28 - 39, Bombay, India.

    Google Scholar 

  11. Brin, S. (1995). Near neighbor search in large metric spaces. In VLDB 1995.

    Google Scholar 

  12. Cormen, T., Leiserson, C., & Rivest, R. (1990). Introduction to Algorithms. The MIT Press, MIT, Cambridge.

    Google Scholar 

  13. Duda, R. O. & Hart, P. E. (1973). Pattern Classification and Scene Analysis. John Wiley & Sons, New York.

    MATH  Google Scholar 

  14. Ellis, T., Roussopoulos, N., & Faloutsos, C. (1987). The R+tree: A dynamic index for multi-dimensional objects. Proc. the 13th Conf. on VLDB, pp.507518.

    Google Scholar 

  15. Faloutsos, C. (1996). Searching Multimedia Databases by Content. Advances in Database Systems. Kluwer Academic Publishers, Boston.

    Google Scholar 

  16. Faloutsos, C., Equitz, W., Flickner, M., Niblack, W., Petkovic, D., & Barber, R. (1994). Efficient and effective querying by image content. J. of Intelligent Information Systems, 3: 231 - 262.

    Article  Google Scholar 

  17. Finkel, R. A. & Bentley, J. L. (1974). Quad trees: A data structure for retrieval on composite keys. Acta Informatica, Springer Verlag (Heidelberg, FRG and NewYork NY, USA) Verlag, 4.

    Google Scholar 

  18. Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., & Yanker, P. (1995). Query by image and video content: The QBIC system. IEEE Computer, pp. 23 - 32.

    Google Scholar 

  19. Freeston, M. (1987). The bang file: a new kind of grid file. Proceedings of the ACM SIGMOD Int. Conf. on Management of Data, pages 260 - 269.

    Google Scholar 

  20. Friedman, J. H., Baskett, F., & Shustek, L. H. (1975). An algorithm for finding nearest neighbors. IEEE Trans. on Computers, C-24: 1000 - 1006.

    Google Scholar 

  21. Friedman, J. H., Bentley, J. L., & Finkel, R. (1977). An algorithm for finding best matches in logarithmic expected time. ACM Trans. on Math. Software, 3 (3): 209 - 226.

    Article  MATH  Google Scholar 

  22. Fukunaga, K. & Narendra, P. M. (1975). A branch and bound algorithm for computing k-nearest neighbors. IEEE Trans. on Computers, C-24(7): 750 - 753.

    Google Scholar 

  23. Gaede, V. & Günther, O. (1995). Multidimensional access methods. Technical Report ISS-16,Institute of Information Systems, Humboldt-Universitat zu Berlin, Spandauer Str. 1 D-10178 Berlin.

    Google Scholar 

  24. Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. Proc. the ACM SIGMOD Int. Conf on Management of Data, pp.47-57, Boston.

    Google Scholar 

  25. Hertz J, Krogh A & Palmer R. Introduction to the theory of Neural Computation. Addison-Wesley, Redwood City 1991.

    Google Scholar 

  26. Hjaltason, G. R. & Samet, H. (1995). Ranking in spatial databases. In Egen hofer, M. J. & Herring, J. R., editors, Advances in Spatial Databases, 4th International Symposium, SSD’95, volume 951 of Lecture Notes in Computer Science, pp.83-95, Berlin. Springer-Verlag.

    Google Scholar 

  27. Ievergelt, J., Hinterberger, H., and Sevcik, K. C. (1984). The grid file: an adaptable symmetric multikey file structure. ACM Transactions on Database Systems,9(1).

    Google Scholar 

  28. Jagadish, H. (1990). Linear clustering of objects with multiple attributes. Proc. the ACM SIGMOD Int. Conf. on Management of Data,pp.332-342, Atlantic City.

    Google Scholar 

  29. Jin, JS; Greenfield, H & Kurniawati, R (1997). CBIR-VU: a new scheme for processing visual data in multimedia systems. Lecture Notes in Computer Science: Visual Information Systems, pp. 40 - 65.

    Google Scholar 

  30. Jin, J S & Kurniawati, R (2001). Varying similarity metrics in visual information retrieval. Pattern Recognition Letters,22(5):583-592.

    Google Scholar 

  31. Jin, J. S., Kurniawati, R., and Xu, G. (1996). A scheme for intelligent image retrieval in multimedia databases. Journal of Visual Communication and Image Representation, 7 (4): 369 - 377.

    Article  Google Scholar 

  32. Jin, J., Tiu, L. S., and Tam, S. W. S. (1995). Partial image retrieval in multimedia databases. Proceedings of Image and Vision Computing New Zealand, pages 179 - 184, Christchurch. Industrial Research Ltd.

    Google Scholar 

  33. Joliffe I.Principal Component Analysis. Springer-Verlag, New York 1986.

    Google Scholar 

  34. Kambhatla N & Leen T. Fast Non-linear dimension reduction. In: Cowan J, Tesauro G, Alspector J (eds). Advances In Neural Information Processing Systems 6. Morgan Kaufman, San Mateo, CA 1994.

    Google Scholar 

  35. Knuth, D. (1998). The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison-Wesley, Reading, Mass, 2nd edition.

    Google Scholar 

  36. Korn, F., Sidiropoulos, N., Faloutsos, C., and Siegel, E. (1996). Fast nearest neighbor search in medical image databases. International Conference on Very Large Data Bases,Bombay, India.

    Google Scholar 

  37. Kramer M. Nonlinear principal component analysis using autoassociative neural networks. AIChe Journal 1991; 37: 233 - 243.

    Article  Google Scholar 

  38. Kurniawati, R., Jin, J. S., and Shepherd, J. A. (1997). The SS+-tree: An improved index structure for similarity searches in a high dimensional feature space. Proceedings of the SPIE: Storage and Retrieval for Image and Video Databases V, volume 3022, pages 110 - 120, San Jose, CA.

    Google Scholar 

  39. Kurniawati, R., Jin, J., and Shepherd, J. A. (1997). Techniques for supporting efficient content-based retrieval in multimedia databases. The Australian Computer Journal, 29 (4): 122 - 130.

    Google Scholar 

  40. Lin, K.-I., Jagadish, H. V., and Faloutsos, C. (1994). The TV tree: An index structure for high-dimensional data. VLDB Journal, 3(4): 517 549.

    Google Scholar 

  41. Ma, N. L. & Jin, J. S. (1998). A generalized content-based image retrieval system. Proc. of ACM Symposium on Applied Computing, pp.460-461, Atlanta.

    Google Scholar 

  42. Nene, S. A. & Nayar, S. K. (1997). A simple algorithm for nearest neighbor search in high dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19.

    Google Scholar 

  43. Nievergelt, J; Hinterberger, H; & Sevcik, K C (1984). The grid file: an adaptable symmetric multikey file structure. ACM Transactions on Database Systems,9(1).

    Google Scholar 

  44. Orenstein, J. & Merrett, T. (1984). A class of data structures for associative searching. Proc. of 3rd SIGACT-SIGMOD symposium on principles of database systems,pages 181-190, Waterloo, Ontario, Canada.

    Google Scholar 

  45. Pandya A & Macy R. Pattern Recognition With Neural Network In C++. CRC Press 1996.

    Google Scholar 

  46. Robinson, J. T. (1981). The K-D-B-tree: A search structure for large multidimensional dynamic indices. Proceedings of the ACM SIG MOD International Conference on Management of Data, pp.10-18, Ann Arbor, MI.

    Google Scholar 

  47. Roussopoulos, N., Kelley, S., and Vincent, F. (1995). Nearest neighbor queries. pages 71 - 79, San Jose, California.

    Google Scholar 

  48. Samet, H. (1990). The Design and Analysis of Spatial Data Structures. Addison Wesley.

    Google Scholar 

  49. Sellis, T; Roussopoulos, N & Faloutsos, C (1987). The R+-tree: a dynamic index for multi-dimensional objects. Proceedings of the Thirteenth Conference on Very Large Databases,Los Altos, CA, pp.507-518.

    Google Scholar 

  50. Shepherd, J. A., Megiddo, N., and Zhu, X. (1998). Making QBIC faster. Technical Report, IBM Almaden Research Center.

    Google Scholar 

  51. Smoliar, S. W. & Zhang, H. J. (1994). Content-based video indexing and retrieval. IEEE Multimedia, 1 (2): 62 - 72.

    Article  Google Scholar 

  52. Sproull, R. F. (1991). Refinements to nearest-neighbor searching in k dimensional trees. Algorithmica, 6: 579 - 589.

    Article  MathSciNet  MATH  Google Scholar 

  53. Watson, A. B. (1983). Detection and recognition of simple spatial forms. In Braddick, O. J. and Sleigh, A. A., editors, Physical and biological processing of images,pages 101-114. Springer-Verlag, New York.

    Google Scholar 

  54. Weber, R; Schek, H J & Blott, S (1998). A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. The Proceedings of the 24th Int. Conf on VLDB, pp. 194 - 205.

    Google Scholar 

  55. White, D. A. & Jain, R. (1996). Algorithms and strategies for similarity retrieval. Technical Report VCL-96-01, Visual Computing Laboratory, University of California, San Diego.

    Google Scholar 

  56. White, D. A. & Jain, R. (1996). Similarity indexing with the SS-tree. Proc. 12th IEEE International Conference on Data Engineering,New Orleans, Louisiana.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jin, J.S. (2003). Indexing and Retrieving High Dimensional Visual Features. In: Feng, D.D., Siu, WC., Zhang, HJ. (eds) Multimedia Information Retrieval and Management. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05300-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05300-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05533-1

  • Online ISBN: 978-3-662-05300-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics