Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

  • 459 Accesses

Abstract

In this chapter, we introduce the technologies used in human face recognition. The different parts of a human face recognition system will be described, namely, locating human faces, extracting facial features, face recognition, and searching for faces from a database. Eigenface is a useful technique for face representation and recognition, which is reviewed in Section 19.2. The algorithms and techniques for detecting human faces in a complex background are described in Section 19.3. After detecting a human face, the techniques for extracting the respective facial features are presented in Section 19.4. Section 19.5 describes a method for human face recognition, which is efficient at searching a large face database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Chellappa, C.L. Wilson, and S. Sirohey, “Human and machine recognition of faces: a survey,” Proceedings of the IEEE, Vol. 83, No. 5, pp. 705–741, May 1995.

    Article  Google Scholar 

  2. The Face Recognition Home Page: http://www.cs.rug.n1/—peterkr/FACE/face.html.

    Google Scholar 

  3. B. Ballard and G.C. Stockman, “Controlling a computer via facial aspect,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 25, No. 4, pp. 669–677, 1995.

    Article  Google Scholar 

  4. K. Aizawa, H. Harashima, and T. Saito, “Model-based analysis synthesis image coding (MBASIC) system for a person’s face,” Signal Processing: Image Communications, Vol. 1, No. 2, pp. 139–152, 1989.

    Article  Google Scholar 

  5. M. Kirby and L. Sirovich, “Application of the Karhunen-Loeve procedure for the characterisation of human faces,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, pp. 103–108, 1990.

    Article  Google Scholar 

  6. M. Turk and A. Pentland, “Eigen faces for recognition,” Journal of Cognitive Neuroscience, 3 (1), pp. 71–86, 1991.

    Article  Google Scholar 

  7. M.H. Yang, D.J. Kriegman, and N. Ahuja, “Detecting faces in images: a survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, pp. 34–58, 2002.

    Article  Google Scholar 

  8. Y. Yokoo and M. Hagiwara, “Human faces detection method using genetic algorithm,” Proceedings of the IEEE International Conference on Evolutionary Computation,pp.113–1181996.

    Google Scholar 

  9. Y. Suzuki, H. Saito, and S. Ozawa, “Extraction of the human face from the natural background using GAs,” Proceedings of IEEE TENCON: Digital Signal Processing Applications, pp. 221–226, Vol. 1, 1996.

    Article  Google Scholar 

  10. J Miao, B. Yin, K.Q. Wang, L.S. Shen and X.C. Chen, “A hierarchical multiscale and multiangle system for human face detection in a complex background using gravity-center template,” Pattern Recognition, 32 (7), pp. 1237–1248, 1999.

    Article  Google Scholar 

  11. C.H. Lin and K.C. Fan, “Triangle-based approach to the detection of human face,” Pattern Recognition, 34 (6), pp. 1271–1284, 2001.

    Article  MATH  Google Scholar 

  12. G. Yang and T.S. Huang, “Human face detection in a complex background,” Pattern Recognition, 27 (1), pp. 53–63, 1994.

    Article  Google Scholar 

  13. K.M Lam, “A fast approach for detecting human faces in a complex background,” Proceedings of the IEEE International Symposium on Circuits and Systems, Vol. 4, pp. 85–88, 1998.

    Google Scholar 

  14. K.W. Wong and K.M. Lam, “A reliable approach for human face detection using genetic algorithm,” Proceedings of the IEEE International Symposium on Circuits and Systems, Vol. 4, pp. 499–502, 1999.

    Google Scholar 

  15. Gu Qian and S.Z. Li, “Combining feature optimization into neural network based face detection”, Proceedings of International Conference on Pattern Recognition, Vol. 2, pp. 814–817, 2000.

    Google Scholar 

  16. K.K. Sung and T. Poggio, “Example-based learning for view-based human face detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pp. 39–51, 1998.

    Article  Google Scholar 

  17. Y.J. Wang and B.Z. Yuan, “A novel approach for human face detection from color images under complex background,” Pattern Recognition, 34, pp. 1983–1992, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Sobottka and I. Pitas, “A novel method for automatic face segmentation, facial feature extraction and tracking,” Signal Processing: Image Communication, 12 (3, pp. 263–281, 1998.

    Google Scholar 

  19. D. Chai, and K.N. Ngan, “Face segmentation using skin-color map in videophone applications,” IEEE Transactions on Circuits and System for Video Technology, Vol. 9, No. 4, pp. 551–564, 1999.

    Article  Google Scholar 

  20. H.L. Wang and S.F. Chang, “A highly efficient system for automatic face region detection in MPEG video,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 7 No. 4, pp. 615–628, 1997.

    Article  MathSciNet  Google Scholar 

  21. Kobus Barnard and Brian Funt, “Camera calibration for colour vision research,” SPIE Conference on Electronic Imaging, Human Vision and Electronic Imaging IV, SPIE Vol. 3644, pp.576–585, 1999.

    Google Scholar 

  22. P. Maragos, “Tutorial on advances in morphological image processing and analysis,” Optical Engineering, 26 (7), pp. 623–632, 1987.

    Article  Google Scholar 

  23. K.W. Wong, K.M. Lam and W.C. Siu, “An efficient algorithm for human face detection and facial feature extraction under different conditions”, Pattern Recognition, 34 (10), pp. 1993–2004, 2001.

    Article  MATH  Google Scholar 

  24. M. Kass, A. Witkin, and D. Terzopoulo, “Snakes, Active contour model,” Proceedings First International Conference on Computer Vision, pp. 259–269, 1987.

    Google Scholar 

  25. D.J. Williams and M.Shah, “A fast algorithm for active contours and curvature estimation,” CVGIP: Image Understanding, 55 (1), pp. 14–26, 1992.

    Article  Google Scholar 

  26. KM. Lam and H. Yan, “Fast Greedy Algorithm for Active Contours,” Electronics Letters, Vol. 30, No. 1, pp. 21–2, 1994.

    Article  Google Scholar 

  27. Wai-Pak Choi, Kin-Man Lam and Wan-Chi Siu, “An adaptive active contour model for highly irregular boundaries,” Pattern Recognition, Vol. 34, pp. 323–331, 2001.

    Article  MATH  Google Scholar 

  28. A.L. Yuille, “Deformable templates for face recognition,” Journal of Cognitive Neuroscience, Vol. 3, pp. 59–70, 1991.

    Article  Google Scholar 

  29. K.M. Lam and H. Yan, “An Improved Method for Locating and Extracting the Eye in Human Face Images,” Proceedings, IEEE International Conference on Pattern Recognition, pp. 411–5, August 1996.

    Google Scholar 

  30. B. Takâcs, “Comparing face images using the modified Hausdorff distance”, Pattern Recognition, 31 (12), pp. 1873–1880, 1998.

    Article  Google Scholar 

  31. R. Brunelli and T. Poggio, “Face recognition: features versus templates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 10, pp. 1042–1052, 1993.

    Article  Google Scholar 

  32. D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge, “Comparing images using the Hausdorff distance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 9, pp. 850–863, 1993.

    Article  Google Scholar 

  33. P. E. Danielsson, “Euclidean Distance Mapping,” Computer Graphics and Image Processing, Vol. 14, pp. 227–248, 1980.

    Article  Google Scholar 

  34. D. G. Sim, O. K. Kwon and R. H. Park, “Object Matching Algorithms Using Robust Hausdorff Distance Measures,” IEEE Transaction on Image Processing, Vol. 8, No. 3, pp. 425–429, 1999.

    Article  Google Scholar 

  35. M. P. Dubuisson and A. K. Jain, “A Modified Hausdorff distance for Object Matching, ” Proc. 12`“ International Conference on Pattern Recognition, pp. 566–568, 1994.

    Google Scholar 

  36. B. Guo, K. M. Lam, W.C. Siu and S. Yang, “Human face recognition using a spatially weighted Hausdorff distance,” Proceedings of the 2001 IEEE International Symposium on Circuits and Systems, pp. 145–148, 2001.

    Google Scholar 

  37. K. H. Lin, B. Guo, K. M. Lam and W. C. Siu, “Human face recognition using a spatially weighted modified Hausdorff distance,” Proceedings of the International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 477–480, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lam, KM. (2003). Finding Human Faces in a Face Database. In: Feng, D.D., Siu, WC., Zhang, HJ. (eds) Multimedia Information Retrieval and Management. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05300-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05300-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05533-1

  • Online ISBN: 978-3-662-05300-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics