Advertisement

Content-Based Retrieval for Medical Data

  • Tom Weidong Cai
  • David Dagan Feng
  • Roger Fulton
Part of the Signals and Communication Technology book series (SCT)

Abstract

The recent information explosion has led to massively increased demand for multimedia data storage in integrated database systems. Content-based retrieval is an important alternative and complement to traditional keyword-based searching for multimedia data, and can greatly enhance information management. However, current content-based image retrieval techniques have some deficiencies when applied in the medical imaging domain. Many of the proposed techniques for content-based retrieval of medical data use features or patterns specific to medical images. In this chapter, we address content-based retrieval techniques for the following types of medical data: one-dimensional ECG signals (Section 17.2); two-dimensional X-ray projection images (Section 17.3); three-dimensional CT/MRI volume images (Section 17.4); and four-dimensional PET / SPECT dynamic images (Section 17.5). Finally, a summary is given in Section 17.6.

Keywords

Single Photon Emission Compute Tomography Functional Image Image Retrieval Fibroglandular Tissue Dynamic Positron Emission Tomography Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. C. Coile, “E-Health: Reinventing Healthcare in the Information Age”, Journal of Healthcare Management, Vol. 45, No.3, pp 206–210, May/Jun, 2000.Google Scholar
  2. [2]
    J. Mitchell, From Telehealth to E-Health: The Unstoppable Rise of E-Health, The Commonwelth Department of Communications, Information Technology and the Arts (DOCITA), Canberra, 1999, available at http://www.dcita.gov.au.
  3. [3]
    E. Binaghi, I. Gagliardi, and R. Schettini, “Indexing and fuzzy logic-based retrieval of colour images”, Proc. IFIP Working Conf. On Visual Database Systems II, Elsevier Science Publishers, pp79–92, 1992.Google Scholar
  4. [4]
    A. Nagasaka and Y. Tanaka, “Automatic video indexing and full-video search for object appearances”, Visual Database System, II, IFIP, Elsevier Science Publishers, pp113–127, 1992.Google Scholar
  5. [5]
    S. W. Smoliar and H. J. Zhang, “Content-based video indexing and retrieval”, IEEE Multimedia, vol.1, pp 62–72, 1994.CrossRefGoogle Scholar
  6. [6]
    M. J. Swain, “Interactive indexing into image database”, Proc. SPIE, vol.1908, pp193–197, 1993.Google Scholar
  7. [7]
    J. R. Smith and S. F. Chang, “Tools and techniques for color image query”, Proc. SPIE, vol. 2670, 1995.Google Scholar
  8. [8]
    J. Weszka, C. Dyer and A. Rosenfeld, “A comparative study of texture measures for terrain classification”, IEEE Trans Sys. Man and Cyb., SMC-6 (4), 1976.Google Scholar
  9. [9]
    P. P. Ghanian and R. C. Dubes, “Performance evaluation for four classes of texture features”, Pattern Recognition, vol.25, no.8, pp 819–833, 1992.CrossRefGoogle Scholar
  10. [10]
    H. Tamura, S. Mori and T. Yamawaki, “Texture features corresponding to visual perception”, IEEE Trans. Sys. Man and Cyb., SMC- (6), 1978.Google Scholar
  11. [11]
    W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, C. Faloutsos and G. Taubin, “The QBIC project: querying images by content using color, texture and shape”, Proc. SPIE, vol.1908, pp 173–187, 1993.CrossRefGoogle Scholar
  12. [12]
    K. Tanabe and J. Ohya, “A similarity retrieval method for line drawing image database”, Progress in Image Analysis and Processing, Chichester: Wiley, pp138–146, 1989.Google Scholar
  13. [13]
    B. M. Mehtre, M. Kankanhalli and W. F. Lee, “Shape measures for content based image retrieval: A comparison”, Information Processing and Management, vol.33, no.3, 1997.Google Scholar
  14. [14]
    F. Rabitti and P. Stanchev, “GRIM-DBMS: a graphical image database management system”, Proc. IFIP Working Conf. On Visual Database Systems, pp. 415–430, 1989.Google Scholar
  15. [15]
    H. Wang, F. Guo, D. Feng and J. Jin, “A signature for content-based image retrieval using a geometrical transform”, Proc. of the 6th ACM Int. Multimedia Conf. MM’98, pp.229–234, Bristol, UK, Sept., 1998.Google Scholar
  16. [16]
    M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by image and video content: the QB1C system”, IEEE Computer, vol. 28, no. 9, pp. 23–32, 1995.Google Scholar
  17. [17]
    A. Pentland, R. W. Picard, S. Sclaroff, “Photobook: tools for content-based manipulation of image databases”, Proc. SPIE, vol. 2185, pp. 34–47, 1994.CrossRefGoogle Scholar
  18. [18]
    J.R. Bach, C. Fuller, A. Gupta, A. Hampaur, B. Horowitz, R. Humphrey, R. Jain, and C. Shu, “The Virage image search engine: an open framework for image management”, SPIE Digital Image Storage and Archiving Systems, vol. 2670, pp. 76–87, Feb, 1996.Google Scholar
  19. [19]
    W. Y. Ma, “Netra: A toolbox for navigating large image databases”, Ph.D. Dissertation. Department of Electrical and Computer Engineering, University of California, Santa Barbara, 1997. (http://vivaldi.ece.ucsb.edu/Netra/Netra)
  20. [20]
    Y. Rui, T. S. Huang, and S. Mehrotra, “Content-based image retrieval with relevance feedback in MARS”, Proc. of IEEE Int. Conf. on Image Processing ‘87, October 26–29, 1997, Santa Barbara, California, USA, ppII815–818. (http://jadzia.ifp.uiuc.edu:8000)Google Scholar
  21. [21]
    P. M. Kelly, T. M. Cannon, “Efficiency issues related to probability density function comparison”, Proc. IS&T/SPIE Symposium on Electronic Imaging, vol. 2670, pp. 42–49, 1996.Google Scholar
  22. [22]
    V. E. Ogle, M. Stonebraker, “Chabot: retrieval from a relational database of images”, IEEE Computer, vol. 28, no. 9, pp. 40–48, 1995.CrossRefGoogle Scholar
  23. [23]
    J. S. Jin, H. Greenfield and R. Kurniawati, “CBIR-VU: a new scheme of processing visual data in multimedia systems”, Lecture Notes in Computer Science: Visual Information Systems, C H C Leung (Ed.), pp.40–65, 1997.Google Scholar
  24. [24]
    V. N. Gudivada and V. V. Raghavan, “Content-based image retrieval systems”, IEEE Computer, vol. 28, no. 9, pp. 18–22, 1995.CrossRefGoogle Scholar
  25. [25]
    A. L. Goldberger and E. Goldberger, Clinical Electrocardiography A Simplified Approach, 5 1 ed. St. Louis, MO: Mosby, 1994.Google Scholar
  26. [26]
    J. G. Webster, Medical Instrumentation, Application and Design, 2nd ed. New York: Wiley, 1995.Google Scholar
  27. [27]
    G. Clifford, L. Tarassenko and N. Townsend, “Fusing Conventional ECG QRS Detection Algorithms with an Auto-associative Neural Network for the Detection of Ectopic Beats”, Proceedings ofICSP2000, pp.1623–1628, 2000.Google Scholar
  28. [28]
    T. Penzel, G. B. Moody, R. G. Mark, A. L. Goldberger and J. H. Peter, “The Apnea-ECG Database”, Computers in Cardiology, vol. 27, pp.255–258, 2000.Google Scholar
  29. [29]
    P. de Chazal, C. Heneghan, E. Sheridan, R. Reilly, P. Nolan and M. O’Malley, “Automatic Classification of Sleep Apnea Epochs Using the Electrocardiogram”, Computers in Cardiology, vol. 27, pp.745–748, 2000.Google Scholar
  30. [30]
    P. Bozzola, G. Bortolan, C. Combi, F. Pinciroli and C. Brohet, “A Hybrid Neuro-Fuzzy System for ECG Classification of Myocardial Infarction”, Computers in Cardiology, vol. 27, pp. 241–244, 1996.Google Scholar
  31. [31]
    J. H. van Bemmel, A. M. van Ginneken, H. Stam, D. Assanelli, P. W. MacFarlane, N. Maglaveras, P. Rubel, C. Zeelenberg and Chr Zywietz, “Integration and Communication for the Continuity of Cardiac Care (I4C)”, J. Electrocardiology, vol. 31(supp):60–68, 1998.CrossRefGoogle Scholar
  32. [32]
    P. de Chazal and B. G. Celler, “Selection of Optimal Parameters for ECG Diagnostic Classification”, In: Computers in Cardiology. Piscataway: IEEE Computer Society Press. 1997:1316.Google Scholar
  33. [33]
    R. Bousseljot and D. Kreiseler, “ECG Signal Analysis by Pattern Comparison”, Computers in Cardiology, vol. 25, pp.349–352, 1998.Google Scholar
  34. [34]
    P. de Chazal, B. G. Celler and R. Reilly, “Using Wavelet Coefficients for the Classification of the Electrocardiogram”, Proceedings of World Congress on Medical Physics and Biomedical Engineering, 2000:4pages.Google Scholar
  35. [35]
    R. Bousseljot and D. Kreiseler, “Waveform Recognition with 10,000 ECGs”, Computers in Cardiology, vol. 27, pp.331–334, 2000.Google Scholar
  36. [36]
    S. Liu, C.F. Babbs and E.J. Delp, “Multiresolution Detection of Spiculated Lesions in Digital Mammograms”, IEEE Transactions on Image Processing, vol.10, no.6, pp 874–884, 2001.MATHCrossRefGoogle Scholar
  37. [37]
    J. M. Dinten et al, “A Global Approach for Localization and Characterization of Microcalcification in Mammograms”, Digital Mammography (1996), Elsevier: 235–238.Google Scholar
  38. [38]
    Y. Chitre et al, “Adaptive Wavelet Analysis and Classification of Mammographie Calcification”, Digital Mammography(1996), Elsevier:323–326.Google Scholar
  39. [39]
    R. N. Strckland et al, “Wavelet Transform for Detecting Microcalcification in Mammograms”, IEEE Transaction on Medical Imaging, pp.218–229, 1996.Google Scholar
  40. [40]
    T. C. Wang et al, “Detection of Microcalcification in Digital Mammograms Using Wavelet”, IEEE Transactiosn on Medical Imaging, pp.498–509, 1998.Google Scholar
  41. [41]
    I. J. Karsseme et al, “Adaptive Noise Equalization and Recognition of Microcalcification Cluster in Mammograms”, Journal of Pattern Recognition and Artificial Intell., no. 7, pp.263–274, 1993.Google Scholar
  42. [42]
    Angelo Balestrieri, Antonella Balestrieri, A. Barone, A. Casanova and M. Fraschini, “Information Retrieval from Medical Database”, Lecture Notes in Computer Science 2184, pp.42–52, 2001.Google Scholar
  43. [43]
    R. Distasi, S. Vitulano et al, “A Hierarchical Representation for Content-based Image Retrieval”, Journal of Visual Language and Computing, no. 11, pp.369–382, 2000.Google Scholar
  44. [44]
    W. Zhang, S. Dickinson, S. Sclaroff and J. Feldman, “Shape-Based Indexing in a Medical Image Database”, Workshop on Biomedical Image Analysis, pp.221–230, June, 1998.Google Scholar
  45. [45]
    E. Pietka, L. Kaabi, M. L. Kuo and H. K. Huang, “Feature Extraction in Carpal Bone Analysis”, IEEE Computer Graphics and Applications, 1991.Google Scholar
  46. [46]
    E. Pietka, M. F. McNitt-Gray, M. L. Kuo and H. K. Huang, “Computer Assisted Phalangeal Analysis in Skeletal Age Assessment”, IEEE Transactions on Medical Imaging, vol. 10, no. 4, pp.616–620, 1991.CrossRefGoogle Scholar
  47. [47]
    W. W. Chu, A. F. Cardenas and R. K. Taira, “KMeD: A Knowledge-based Multimedia Medical Distributed Database System”, Information Systems, vol. 20, no. 2, pp.75–96, 1995.CrossRefGoogle Scholar
  48. [48]
    S. Napel, G. D. Rubin, C. F. Beaulieu, R. B. Jeffrey and V. Argiro, “Perspective Volume Rendering of Cross-sectional Images for Simulated Endoscopy and Intraparenchymal Viewing”, Proceedings SPIE: Medical Image, Newport Beach, CA, pp.1–12, 1996.Google Scholar
  49. [49]
    G. P. Robinson, H. D. Tagare, J. S. Duncan and C. C. Jaffe, “Medical Image Collection Indexing: Shape-based Retrieval Using KD-Trees”, Computerized Medical Imaging and Graphics“, vol. 20, no. 4, pp.209–217, 1996.CrossRefGoogle Scholar
  50. [50]
    T-Y Hou, P. Liu, A. Hsu and M-Y Chiu, “Medical Image Retrieval by Spatial Features”, IEEE Inter. Conf Systems, Man and Cybernetics, vol. 2, pp.1364–69, 1992.Google Scholar
  51. [51]
    S. C. Orphanoudakis, C. Chronaki and S. Kostomanolakis, “I2C: A System for the Indexing, Storage, and Retrieval of Medical Images by Content”, Medical Informatics, vol. 19, no. 2, pp.109122, 1994.CrossRefGoogle Scholar
  52. [52]
    S. C. Orphanoudakis, C. Chronaki and D. Vamvaka, “IZCnet: Content-Based Similarity Search in Geographically Distributed Repositories of Medical Images”, Computerized Medical Imaging and Graphics, vol. 20, no. 4, pp.193–207, 1996.CrossRefGoogle Scholar
  53. [53]
    W. W. Chu, C-C Hsu, A. F. Cardenas and R. K. Taira, “Knowledge-Based Image Retrieval with Spatial and Temporal Constructs”, IEEE Transactions on Knowledge and Data Engineering, vol. 10, no. 6, pp.872–888, 1998.CrossRefGoogle Scholar
  54. [54]
    Y. Liu, F. Dellaert, W. E. Rothfus, A. Moore, J. Schneider and T. Kanade, “Classification-Driven Pathological Neuroimage Retrieval Using Statistical Asymmetry Measures”, Lecture Notes in Computer Science, vol. 2208, pp.655–665, 2001.CrossRefGoogle Scholar
  55. [55]
    G. Potamias, “Content-Based Similarity Assessment in Multi-segmented Medical Image Data Bases”, Lecture Notes in Computer Science, vol. 2123, pp.347–361, 2001.Google Scholar
  56. [56]
    S. C. Huang and M. E. Phelps, “Principles of tracer kinetic modelling in positron emission tomography and autoradiography”, In: Positron emission tomography and autoradiography. Principles and applications for the brain and heart. New York: Raven Press, pp.287–346, 1986.Google Scholar
  57. [57]
    D. Feng, D. Ho, H. Iida & K. Chen, “Techniques for Functional Imaging”, an invited chapter contributing to Medical Imaging Techniques and Applications, Edited by: C. T. Leondes, in ‘Gordon and Breach International Series in Engineering, Technology and Applied Science’, Gordon and Breach Science Publishers, pp85–145, 1997.Google Scholar
  58. [58]
    W. Cai, D. Feng and R. Fulton, “Content-Based Retrieval of Dynamic PET Functional Images”, IEEE Transactions on Information Technology in Biomedicine, vol. 4, no. 2, pp.152–158, 2000.CrossRefGoogle Scholar
  59. [59]
    D. Ho, D. Feng and K. Chen, “Dynamic image data compression in spatial and temporal domains: Theory and algorithm”, IEEE Trans. Info. Tech. Biomed., vol. 1, no. 4, pp. 219–228, 1997.CrossRefGoogle Scholar
  60. [60]
    W. Cai, D. Feng and R. Fulton, “Clinical investigation of a knowledge-based data compression algorithm for dynamic neurologic FDG-PET images”, Proceedings of the 20“’ Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), vol. 20, part 3, pp. 1270–1273, Hong Kong, Oct 29 - Nov 1, 1998.Google Scholar
  61. [61]
    S. C. Huang, M. E. Phelps, E. J. Hoffman, K. Sideris, C. Selin, and D. E. Kuhl, “Non-invasive determination of local cerebral metabolic rate of glucose in man”, Amer. J. Physiol., vol. 238, pp. E69–E82, 1980.Google Scholar
  62. [62]
    D. Feng, D. Ho, K. Chen, L. C. Wu, J. K. Wang, R. S. Liu, and S. H. Yeh, “An evaluation of the algorithms for determining local cerebral metabolic rates of glucose using positron emission tomography dynamic data,” IEEE Trans. Med Imag., vol. 14, pp. 697–710, 1995.CrossRefGoogle Scholar
  63. [63]
    D. Feng, W. Cai and R. Fulton, “An optimal image sampling schedule design for cerebral blood volume and partial volume correction in neurologic FDG-PET studies”, Australia and New Zealand Journal of Medicine, vol. 28, no.3, pp. 361, 1998.Google Scholar
  64. [64]
    X. Li, D. Feng, and K. Chen, “Optimal image sampling schedule: A new effective way to reduce dynamic image storage space and functional image processing time”, IEEE Trans. Med. Imag., vol. 15, pp. 710–718, 1996.CrossRefGoogle Scholar
  65. [65]
    D. Feng, W. Cai and R. Fulton, “FIPS: A functional image processing system for PET dynamic studies”, Proceedings of the Ivth International Conference on Quantification of Brain Function with PET (BrainPET’99), pp772, Copenhagen, Denmark, Jun 13–17, 1999.Google Scholar
  66. [66]
    D. Ho, D. Feng and L.C. Wu, “An assessment of optimal image sampling schedule design in dynamic PET-FDG studies”, pp. 315–320, in Quantitative Functional Brain Imaging with Positron Emission Tomography, Herscovitch, Publisher Academic Press, 1998.Google Scholar
  67. [67]
    C. S. Patlak, R. G. Blasberg, and J. Fenstermacher, “Graphical evaluation of blood to brain transfer constants from multiple-time uptake data,” J. Cereb. Blood Flow Metab., vol. 3, pp. 1–7, 1983.CrossRefGoogle Scholar
  68. [68]
    D. Feng, S. C. Huang, Z. Wang, and D. Ho, “An unbiased parametric imaging algorithm for non-uniformly sampled biomedical system parameter estimation,” IEEE Trans. Med. Imag., vol. 15, pp. 512–518, 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tom Weidong Cai
  • David Dagan Feng
  • Roger Fulton

There are no affiliations available

Personalised recommendations