Integral Equation Methods in Physical Geodesy

  • Bernhard Heck


Modern procedures for solving geodetic boundary value problems are often based on the integral equation approach, employing representation formulae of different type for the mathematical description of the disturbing potential. Several alternative representations (single and double layer potentials as well as Brovar’s generalized single layer and volume potentials) and the resulting integral equations are considered for the simple Molodenskii problem. The integral equations and the corresponding solutions for the special case of a spherical boundary surface are derived and compared with respect to their properties. It is shown that the representations by Brovar’s generalized volume potential and by surface multipoles are not suitable due to numerical instabilities.


Representation Formula Integral Equation Method Layer Potential Physical Geodesy Double Layer Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brovar, V.V.: Solutions of the Molodenskij Boundary Problem. Geodesy and Aerophotography (1963), 237–240Google Scholar
  2. Brovar, V.V.: Fundamental Harmonic Functions With a Singularity on a Segment and Solution of Outer Boundary Problems. Geodesy and Aerophotography (1964), 150–155Google Scholar
  3. Giraud, G.: Equations integrales principales. Annales Scientifiques de L’École Normale Supérieure, Troisième Série 51 (1934), 251–372Google Scholar
  4. Grafarend, E.: Die freie geodätische Randwertaufgabe und das Problem der Integrationsfläche innerhalb der Integralgleichungsmethode. In: E. Grafarend und N. Weck, Tagung Freie Randwertaufgaben. Mitt. Inst. f. Theoretische Geodäsie der Univ. Bonn, Nr. 4 (1972), 60–85Google Scholar
  5. Grafarend, E.: The Geodetic Boundary Value Problem. In: B. Brosowski, E. Martensen (Hrsg.), Methoden und Verfahren der mathematischen Physik, Bd. 13, Part II. Bibliogr. Institut Mannheim/Wien/Zürich (1975), 1–25Google Scholar
  6. Grafarend, E.: The Definition of the Telluroid. Bull. Géod. 52 (1978), 25–37CrossRefGoogle Scholar
  7. Grafarend, E.; Niemeier, W.: The Free Nonlinear Boundary Value Problem of Physical Geodesy. Bull. Géod. 101, (1 er Sept. 1971), 243–262CrossRefGoogle Scholar
  8. Hackbusch, W.: Integralgleichungen. Teubner-Verlag, Stuttgart, 1989CrossRefGoogle Scholar
  9. Heck, B.: On the Linearized Boundary Value Problems of Physical Geodesy. Rep. No. 407, Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus/Ohio, 1991Google Scholar
  10. Heck, B.: Formulation and Linearization of Boundary Value Problems: From Observables to a Mathematical Model. In: F. Sansò, R. Rummel (eds.): Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Springer Lecture Notes in Earth Sciences, No. 65 (1997), 121–160Google Scholar
  11. Heiskanen, W.A.; Moritz, H.: Physical Geodesy. W.H. Freeman and Co., San Francisco and London, 1967Google Scholar
  12. Klees, R.: Lösung des fixen geodätischen Randwertproblems mit Hilfe der Randelementmethode. Deutsche Geodätische Kommission, Reihe C 382, München, 1992Google Scholar
  13. Klees, R.: Topics on Boundary Element Methods. In: F. Sansò, R. Rummel (eds.): Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Springer Lecture Notes in Earth Sciences, No. 65 (1997), 482–531CrossRefGoogle Scholar
  14. Lehmann, R.: Studies on the Use of the Boundary Element Method in Physical Geodesy. Deutsche Geodätische Kommission, Reihe A 113, München, 1997Google Scholar
  15. Martensen, E.; Ritter, S.: Potential Theory. In: Sansò, E; Rummel R., (Eds.), Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Springer Lecture Notes in Earth Sciences, No. 65 (1997), 19–66Google Scholar
  16. Martinec, Z.; Grafarend, W.: Solution to the Stokes Boundary-Value Problem on an Ellipsoid of Revolution. Studia geoph. et geod. 41 (1997), 103–129CrossRefGoogle Scholar
  17. Molodenskii, M.S.; Eremeev, V.F.; Yurkina, M.I.: Methods for Study of the External Gravitational Field and Figure of the Earth. Transl. from Russian (1960), Jerusalem, Israel Program for Scientific Translations, 1962Google Scholar
  18. Seitz, K.: Ellipsoidische und topographische Effekte im geodätischen Randwertproblem. Deutsche Geodätische Kommission, Reihe C 483, München, 1997Google Scholar
  19. Sigl, R.: Einführung in die Potentialtheorie. H. Wichmann Verlag, Karlsruhe, 1973Google Scholar
  20. Stokes, G.G.: On the Variation of Gravity at the Surface of the Earth. Transactions of the Cambridge Philosophical Society, Vol. VIII, part V (1849), 672–695Google Scholar
  21. Walter, W.: Einführung in die Potentialtheorie. BI Hochschulskripten Bd. 765a, Bibliograph. Institut, Mannheim/Wien/Zürich, 1971Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bernhard Heck

There are no affiliations available

Personalised recommendations