Advertisement

Somigliana-Pizzetti Minimum Distance Telluroid Mapping

  • Alireza A. Ardalan
Chapter

Abstract

A minimum distance mapping from the physical surface of the earth to the telluroid under the normal filed of Somigliana-Pizzetti is constructed. The point-wise minimum distance mapping under the constraint that actual gravity potential at the a point of physical surface of the earth be equal to normal potential of Somigliana-Pizzetti leads to a system of four nonlinear equations. The normal equations of minimum distance mapping are derived and solved via Newton-Raphson iteration. The problem of the existence and uniqueness of the solution is addressed. As a case study the quasi-geoid for the state Baden-Württemberg (Germany) is computed.

Keywords

Gravity Potential Physical Surface Reference Ellipsoid Forward Transformation Isoparametric Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bode A. and E.W. Grafarend (1982): The telluroid mapping based on a normal gravity potential including the centrifugal term. Bolletino di Geodesia e Scienze Affini 41: 21–56Google Scholar
  2. Borkowski K.M. (1989): Accurate algorithms to transform geocentric to geodetic coordinates. Bull. Géod. 63: 50–56CrossRefGoogle Scholar
  3. Chen X., Z. Nashed and L. Qi (1997): Convergence of Newton’s method for singular smooth and non-smooth equations using adaptive outer inverses. SIAM J. Optim. 7: 445–462CrossRefGoogle Scholar
  4. Denker H. and W. Torge (1998): The European gravimetric quasi-geoid EGG97 — an IAG supported continental enterprise, In: R. Forsberg el al. (eds) IAG Symp. Proceed. 119: 249–254, Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. Grafarend E.W. (1978): The definition of the telluroid. Bull. Geod. 52: 25–37CrossRefGoogle Scholar
  6. Grafarend E.W. and P. Lohse(1991): The minimal distance mapping of the topographic surface onto the (reference) ellipsoid of revolution. Manus. Geod. 16: 92–110Google Scholar
  7. Grafarend E.W. and A.A. Ardalan (1999): World Geodetic Datum 2000 (WGD2000). Accepted for publication, Journal of GeodesyGoogle Scholar
  8. Grafarend E.W., R. Syffus and R. You (1995): Projective heights in geometry and gravity space. Allgemeine Vermessungs Nachrichten 382–403Google Scholar
  9. Grafarend E.W., A.A. Ardalan and M. Sideris (1999): The Spheroidal Fixed-Free Two-Boundary Value Problem For Geoid Determination (The Spheroidal Bruns Transform). Accepted for publication, Journal of GeodesyGoogle Scholar
  10. Heikkinen M. (1982): Geschlossene Formeln zur Berechnung räumlicher geodätischer Koordinaten aus rechtwinkligen Koordinaten. Z.f. Verm. wesen 107: 207–211Google Scholar
  11. Moon P. and D.E. Spencer (1953): Recent investigations of the separation of Laplace’s equation. Ann. Math. Soc. Proc. 4: 302–307Google Scholar
  12. Moon P. and D.E. Spencer (1961): Field theory handbook. Springer-Verlag, New York, Heidelberg, BerlinCrossRefGoogle Scholar
  13. Paul M.K. (1973): A note on computation of geodetic coordinates from geocentric (Cartesian) coordinates. Bull. Géod. 108: 135–139CrossRefGoogle Scholar
  14. Pizzetti P. (1894): Geodesia—Sulla espressione della gravita alla superficie del geoide, supposto ellissoidico. Atti Reale Accademia dei Lincei 3: 166–172Google Scholar
  15. Somigliana C. (1930): Geofisica—Sul campo gravitazionale esterno del geoide ellissoidico. Atti della Reale Academia Nazionale dei Lincei Rendiconti 6: 237–243Google Scholar
  16. Thong N.C. and E.W. Grafarend (1989): A spheroidal model of the terrestrial gravitational field. Manuscr. Geod. 14: 285–304Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alireza A. Ardalan

There are no affiliations available

Personalised recommendations