Somigliana-Pizzetti Minimum Distance Telluroid Mapping

  • Alireza A. Ardalan


A minimum distance mapping from the physical surface of the earth to the telluroid under the normal filed of Somigliana-Pizzetti is constructed. The point-wise minimum distance mapping under the constraint that actual gravity potential at the a point of physical surface of the earth be equal to normal potential of Somigliana-Pizzetti leads to a system of four nonlinear equations. The normal equations of minimum distance mapping are derived and solved via Newton-Raphson iteration. The problem of the existence and uniqueness of the solution is addressed. As a case study the quasi-geoid for the state Baden-Württemberg (Germany) is computed.


Dinates Alla Bide Ellipsoid Ofrevolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bode A. and E.W. Grafarend (1982): The telluroid mapping based on a normal gravity potential including the centrifugal term. Bolletino di Geodesia e Scienze Affini 41: 21–56Google Scholar
  2. Borkowski K.M. (1989): Accurate algorithms to transform geocentric to geodetic coordinates. Bull. Géod. 63: 50–56CrossRefGoogle Scholar
  3. Chen X., Z. Nashed and L. Qi (1997): Convergence of Newton’s method for singular smooth and non-smooth equations using adaptive outer inverses. SIAM J. Optim. 7: 445–462CrossRefGoogle Scholar
  4. Denker H. and W. Torge (1998): The European gravimetric quasi-geoid EGG97 — an IAG supported continental enterprise, In: R. Forsberg el al. (eds) IAG Symp. Proceed. 119: 249–254, Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. Grafarend E.W. (1978): The definition of the telluroid. Bull. Geod. 52: 25–37CrossRefGoogle Scholar
  6. Grafarend E.W. and P. Lohse(1991): The minimal distance mapping of the topographic surface onto the (reference) ellipsoid of revolution. Manus. Geod. 16: 92–110Google Scholar
  7. Grafarend E.W. and A.A. Ardalan (1999): World Geodetic Datum 2000 (WGD2000). Accepted for publication, Journal of GeodesyGoogle Scholar
  8. Grafarend E.W., R. Syffus and R. You (1995): Projective heights in geometry and gravity space. Allgemeine Vermessungs Nachrichten 382–403Google Scholar
  9. Grafarend E.W., A.A. Ardalan and M. Sideris (1999): The Spheroidal Fixed-Free Two-Boundary Value Problem For Geoid Determination (The Spheroidal Bruns Transform). Accepted for publication, Journal of GeodesyGoogle Scholar
  10. Heikkinen M. (1982): Geschlossene Formeln zur Berechnung räumlicher geodätischer Koordinaten aus rechtwinkligen Koordinaten. Z.f. Verm. wesen 107: 207–211Google Scholar
  11. Moon P. and D.E. Spencer (1953): Recent investigations of the separation of Laplace’s equation. Ann. Math. Soc. Proc. 4: 302–307Google Scholar
  12. Moon P. and D.E. Spencer (1961): Field theory handbook. Springer-Verlag, New York, Heidelberg, BerlinCrossRefGoogle Scholar
  13. Paul M.K. (1973): A note on computation of geodetic coordinates from geocentric (Cartesian) coordinates. Bull. Géod. 108: 135–139CrossRefGoogle Scholar
  14. Pizzetti P. (1894): Geodesia—Sulla espressione della gravita alla superficie del geoide, supposto ellissoidico. Atti Reale Accademia dei Lincei 3: 166–172Google Scholar
  15. Somigliana C. (1930): Geofisica—Sul campo gravitazionale esterno del geoide ellissoidico. Atti della Reale Academia Nazionale dei Lincei Rendiconti 6: 237–243Google Scholar
  16. Thong N.C. and E.W. Grafarend (1989): A spheroidal model of the terrestrial gravitational field. Manuscr. Geod. 14: 285–304Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alireza A. Ardalan

There are no affiliations available

Personalised recommendations