Skip to main content

Carbon Cycling over Lands and Oceans

  • Chapter
Global Climate

Abstract

Increasing carbon dioxide (CO2) is the main driving force of climate change. We learned from ice core measurements that prior to the Industrial Revolution, 200 years ago, the CO2 concentration in the atmosphere was fairly stable, indicating some quasi-equilibrium state for the sum of all processes which controlled the atmospheric carbon content. Since then, growing industries have put a strong demand on energy, which was met by extracting fossil fuels from the earth’s crust and burning them in engines. Furthermore, the population increase from 0.6 to 6 billion has fostered the need for new lands for agriculture, and the extension of cropland and pastures has led to deforestation. Many forests have been cut or degraded, and today, about 80% of the terrestrial ecosystems are directly influenced by human activities. Land use and land use changes over the past 200 years have caused land ecosystems to lose carbon. Overall, in response to both land use changes and fossil fuel burning, the amount of CO2 in the air has risen from 280 ppm before the Industrial Revolution to the present 365 ppm. The magnitude of the ongoing rise in CO2 is comparable to changes which occurred in the distant past. More than 10 000 years ago, our planet warmed up by 5°C as extensive ice sheets covering North America and Scandinavia melted away. During that period, CO2 increased from 200 to 280 ppm. Yet this 80 ppm increase took place within 5000 years whereas human activities have fostered a comparable rise within only 200 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J. D., Nadelhoffer, K. J., Steuder, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39(6):378–386.

    Article  Google Scholar 

  • Andrie C., Oudot C., Genthon C., and Merlivat L. (1986) CO2 Fluxes in the tropical Atlantic during FOCAL cruises. Journal of Geophysical Research 91(C 10):11741–11755.

    Article  Google Scholar 

  • Baldocchi D, Valentini R, Running S, Oechel W, Dahlman R (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biol 3:159–168

    Article  Google Scholar 

  • Ball, J. T., (1988). An analysis of stomatal conductance, PhD Thesis, Stanford University, Stanford, Calif. 89 pp.

    Google Scholar 

  • Battle M., Bender M., Sowers T., Tans P. P., Butler J. H., Elkins J. W., Ellis J. T., Conway T., Zhang N., Lang P. M., and Clarke A. D. (1996) Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature 383: 231–235.

    Article  Google Scholar 

  • Barnola, J. M., Anklin, M., Porcheron, J., Raynaud, D., Schwander, J., & Stauffer, B. (1995). CO2 evolution during the last millennium as recorded by Antarctic and Greenland ice. Tellus, 47(B):264–272.

    Google Scholar 

  • Betts R. A., Cox P. M., Lee S. E., and Woodward F. I. (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387, 796–799.

    Article  Google Scholar 

  • Broecker, W. S., Peng, T.-H., Ostlund, G., & Stuiver, M. (1985). The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research, 90(C4), 6953–6970.

    Article  Google Scholar 

  • Bousquet -P; Ciais -P; Peylin -P; Ramonet -M; Monfray -P (1999). Inverse modeling of annual atmospheric CO2 sources and sinks 1. Method and control inversion. Journal of Geophysical Research 104 (D21):26161–26178

    Article  Google Scholar 

  • Cao M. and Woodward F. I. (1998) Dynalic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252.

    Article  Google Scholar 

  • Christensen NL, Bartuska AM, Brown JH, Carpenter S, D’Antonio C, Francis R, Franklin JF, MacMahon JA, Noss RF, Parsons DJ, Peterson CH, Turner MG, Woodmansee RG (1996) The report of the Ecological Society of America committee on the scientific basis for ecosystem management. Ecol App 6:665–691

    Article  Google Scholar 

  • Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., & Francey, R. J. (1995a). A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 269, 1098–1102.

    Article  Google Scholar 

  • Ciais, P., Tans, P. P., White, J. W., Trolier, M., Francey, R., Berry, J. A., Randall, D., Sellers, P. J., Collatz, J. G., & Schimel, D. S. (1995b). Partitioning of ocean and land uptake of CO2 as inferred by dl3C measurements from the NOAA Climate Monitoring and Diagnostic Laboratory global air sampling network. Journal of Geophysical Research, 100(D3), 5051–5070.

    Article  Google Scholar 

  • Collatz, G. J., Ball, J. T., Grivet, C., & Berry, J. A. (1991). Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54, 107–136.

    Article  Google Scholar 

  • Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A., & Zhang, N. (1994). Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostic Laboratory G1obal Air Sampling Network. Journal of Geophysical Research 99(D11) 22831–22855

    Article  Google Scholar 

  • Dai, A., & Fung, I. (1993). Can climate variability contribute to the “missing” CO2 sink? Global Biogeochemical Cycles, 7(3), 599–609.

    Article  Google Scholar 

  • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185–190.

    Article  Google Scholar 

  • Farquhar, G. D., Caemmerer, S. v., & Berry, J. A. (1980). A biochemical model of photosynthetic assimilation in leaves of C3 species. Planta, 149, 78–90.

    Article  Google Scholar 

  • Feely R. A., Wanninkhof R., Takahashi T., and Tans P. (1999) Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature 398, 597–601.

    Article  Google Scholar 

  • Francey, P. P. Tans, R. J., Allison, C. E., Enting, I. G., White, J. W. C., and Trolier, M. (1994). Changes in the oceanic and terrestrial carbon uptake since 1982. Nature 373, 326–330.

    Article  Google Scholar 

  • Friend, A.D., A.K. Stevens, and M.G.R. Cannell, A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v.3.0), Ecological Modelling, 95, 249–288, 1997.

    Article  Google Scholar 

  • Frew, N. M. The role of organic films in air-sea gas exchange; in The sea surface and Global change (ed. Liss, P. S., and Duce, R. A.) 121–171 (Cambridge university Press, Cambridge, 1997)

    Chapter  Google Scholar 

  • Fung, I. Y., Tucker, C. J., & Prentice, K. C. (1987). Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2. Journal of Geophysical Research, 92(D3), 2999–3013.

    Article  Google Scholar 

  • Hao, W. M., Liu, M. H., & Crutzen, P. J. (1990). Estimates of annual and regional release of CO2 and other trace gases to the atmosphere from fires in the Tropics, based on the FAO statistics for the period 1975–1980. In G. J. Goldammer (Ed.), Fires in the tropical biota: ecosystem processes and global challenges (pp. 440–462). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Houghton, R. A. (1991). Releases of carbon to the atmosphere from degradation of forests in tropical Asia. Canadian Journal of Forest Research, 21, 132–142.

    Article  Google Scholar 

  • Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Mellilo, J. M., Palm, C. A., Peterson, B. J., Shaver, G. R., Woodwell, G. M., Moore, B., Skole, D. L., & Myers, N. (1987). The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use : geographic distribution of the global flux. Tellus, 39B, 122–139.

    Google Scholar 

  • Houghton, S. (1991). Biomass burning from the perspective of the global carbon cycle. In J. S. Levine (Eds.), Global Biomass Burning: Atmospheric, Climatic and Biospheric implications Cambridge: MIT Press. 321–325.

    Google Scholar 

  • IPCC (1995). Climate change 1994. Radiative forcing of climate change. An evaluation of the IPCC IS92 emissions scenarios. Cambridge university press. 329 pp.

    Google Scholar 

  • Jenkinson D. S., D. E. Adams and A. Wild (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351: 304–306.

    Article  Google Scholar 

  • Joos F., Plattner G. K., Stocker T. F., Marchal O., and Schmittner A. (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284, 464–467.

    Article  Google Scholar 

  • Keeling, C. D. (1995). Interannual extremes in the rate of rise of atmospheric carcone dioxide since 1980. Nature, 375, 666–670.

    Article  Google Scholar 

  • Keeling R. F. (1995) The atmospheric oxygen cycle : the oxygen isotopes of atmospheic CO2 and O2 and the O2/N2 ratio. Reviews of Geophysics, 1253–1262.

    Google Scholar 

  • Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G., & Roeloffzen, H. A. (1989a). A Three-dimensional Model of Atmospheric CO2 Transport Based on Observed Winds : 1. Analysis of Observational Data. In Aspects of Climate Variability in the Pacific and Western Americas, Geophysical monograph 55, AGU (Ed), Washington (USA) 164–236.

    Google Scholar 

  • Keeling, C. D., Piper, S. C., & Heimann, M. (1989b). A Three-dimensional Model of Atmospheric CO2 Transport Based on Observed Winds : 4. Mean annual gradients and interannual variations. In Aspects of Climate Variability in the Pacific and Western Americas, Geophysical monograph 55, AGU (Ed), Washington (USA), 304–363.

    Google Scholar 

  • Keeling, C.D., J.F.S. Chin, and T.P. Whorf, Increased activity of northern vegetation inferred from atmospheric CO2 measurements, Nature, 382, 146–149, 1996.

    Article  Google Scholar 

  • Kindermann J., Wurth G., Kohlmaier G. H., and Badeck F. W. (1996) Interannual variation of carbon exchange fluxes in terrestrial ecosystems. Global Biogeochemical Cycles 10(4), 737–755.

    Article  Google Scholar 

  • Lefèvre, N., A.J. Watson, D.J. Cooper, R.F. Weiss, T. Takahashi and S.C. Sutherland. Assessing the seasonality of the oceanic sink for CO2 in the Northern Hemisphere. Global Biogeochemical cycles, 13, 273–286, 1999.

    Article  Google Scholar 

  • Leuning, R., A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant, Cell and Environment18, 339–355, 1995.

    Article  Google Scholar 

  • Liss, P. S., & Merlivat, L. (1986). Air-sea gas exchange rates : introduction and synthesis. In P. Buat-Menard (Ed.), The role of air-sea exchange in geochemical cycling NATO-ASI Series Vol. 185, D. Reidel., Dordrecht, 113–127

    Chapter  Google Scholar 

  • Lloyd J. and Taylor J. A. (1994) On the temperature dependance of soil respiration. Functional Ecology 8, 315–323.

    Article  Google Scholar 

  • Maier-Reimer, E. (1993). Geochemical cycles in an ocean general circulation model. Preindustrial tracer distribution. Global Biogeochemical Cycles, 7, 645–677.

    Article  Google Scholar 

  • Marland, G., Rotty, R. M., & Treat, N. L. (1985). CO2 from fossil fuel burning: global distribution of emissions. Tellus, 37(B), 243–258.

    Google Scholar 

  • Myneni, R.B., C.D. Keeling, C.J. Tucker, G. Asrar, and R.R. Nemani, Increased plant growth in the northern high latitudes from 1981 to 1991, Nature, 386, 698–702, 1997.

    Article  Google Scholar 

  • Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., & Zumbrunn, R. (1982). Ice core sample measurements give atmospheric CO2 content during past 40 000 years. Nature, 295, 220–223.

    Article  Google Scholar 

  • Oeschger, H., Siegenthaler, U., Schotterer, U., & Gugelmann, A. (1975). A box diffusion model to study the carbon dioxide exchange in nature. Tellus, 27, 168–191.

    Article  Google Scholar 

  • Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44(B), 81–89.

    Google Scholar 

  • Randall, D. A., Sellers, P. J., Berry, J. A., Dazlich, D. A., Zhang, C., Collatz, J. A., Denning, A. S., Los, S. O., Field, C. B., Fung, I., Justuce, C. O., & Tucker, C. J. (1996). A revised land surface parameterization (SiB2) for GCMs. Part 3: the greening of the Colorado State University general circulation model. Journal of Climate, 9. 738–763.

    Article  Google Scholar 

  • Raynaud D., J. Jouzel, J. M. Barnola, J. Chappelaz, R. J. Delmas and C. Lorius (1993) The ice record of greenhouse gases. Science 259: 926–934.

    Google Scholar 

  • Ruimy, A., Saugier, B., & Dedieu, G. (1994). Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 99, 5263–5283.

    Article  Google Scholar 

  • Sarmiento J. L., Hughes T. M. C., Stouffer R. J., and Manabe S. (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249.

    Article  Google Scholar 

  • Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., & Hall, F. G. (1992). Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sensing Environment, 42, 187–216.

    Article  Google Scholar 

  • Sellers P. J., Bounoua L., Collatz G. J., Randall D. A., Dazlich D. A., Los S. O., Berry J. A., Fung I., Tucker C. J., Field C. B., and Jensen T. G. (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 211, 1402–1406.

    Article  Google Scholar 

  • Takahashi, T., Goddard, J., Sutherland, S., Chipman, D. W., & Breeze, C. C. (1986). Seasonal and Geographic Variability of Carbon Dioxide Sink/Source in the Oceanic Areas. Final Technical Report for contract MRETTA 19X–89675C. New-York: Lamont-Doherty Geological Observatory.

    Google Scholar 

  • Takahashi, T., Olafson, J., Goddard, J. G., Chipman, D. W., & Sutherland, S. C. (1994). Seasonal variation of CO2 and nutrients in the high-latitude surface ocans: a comparative study. Global Biogeochemical Cycles, 7(4), 843–878.

    Article  Google Scholar 

  • Takahashi, T. Feely, R.A., Weiss, R.F., Wanninkhof, R. H., Chipman, D.W., Sutherland S.T. and T. T. Takahashi. Global air-sea flux of CO2 : an estimate based on measurements of seaair pCO2 difference. (1997) Proc. Natl. Acad. Sci., USA. 94 8292–8299.

    Article  Google Scholar 

  • Tans, P. P., Fung, I. Y., & Takahashi, T. (1990). Observational Constraints on the Global Atmospheric CO2 budget. Science, 247, 1431–1438.

    Article  Google Scholar 

  • Tian H., Mellilo J. M., Kicklighter D. W., Mc Guire A. D., Helfrich III J. V. K., Moore III B., and Vörösmarty C. J. (1998) Effect of interannual climate variability on carnon storage in Amazonian ecosystems. Nature 396, 664–667.

    Article  Google Scholar 

  • Townsend, A. R., Braswell, B. H., Holland, E. A., & Penner, J. E. (1996). Nitrogen deposition and terrestrial carbon storage: linking atmospheric chemistry and the global carbon budget. Ecological Applications, 6. 806–814.

    Article  Google Scholar 

  • Trolier M., White, J.W.C., Tans, P.P., Masarie, K.A. and Gemery, P.A. (1996). Monitoring the isotopic composition of atmospheric CO2 : measurements from the NOAA global air sampling network. Journal of Geophysical Research, 101, D20, 25897–25916, 1996.

    Article  Google Scholar 

  • Wanninkhof, R. and W. R. McGillis, A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Left., 26, 1889–1892, 1999.

    Article  Google Scholar 

  • Woodward, F.I., T.M. Smith, and W.R. Emanuel, A global land primary productivity and phytogeography model, Global Biogeochemical Cycles, 9, 471–490, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ciais, P. (2003). Carbon Cycling over Lands and Oceans. In: Rodó, X., Comín, F.A. (eds) Global Climate. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05285-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05285-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07856-9

  • Online ISBN: 978-3-662-05285-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics