Skip to main content

An Introduction to Ocean Climate Modeling

  • Chapter
Global Climate
  • 243 Accesses

Abstract

This chapter introduces some of the science of numerical ocean climate modeling. The discussion pedagogical and self-contained, thus requiring little previous knowledge of numerical ocean modeling. It is geared towards the science, engineering, and/or mathematics student or researcher who wishes to garner a sense of the goals, methods, and some details of ocean climate modeling. Notably, it only presents a small hint at the large body of literature which supports the field of climate modeling. To do more justice would require many textbooks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apel, J.R. (1987) Principles of Ocean Physics. International Geophysics Series, Volume 38. Academic Press. 634 pages.

    Google Scholar 

  • Aris, R. (1962) Vectors, Tensors and the Basic Equations of Fluid Mechanics, Dover publishing.

    Google Scholar 

  • Batchelor, G. K. (1967) An Introduction to Fluid Dynamics, Cambridge University Press. 615 pages.

    Google Scholar 

  • Bleck, R., C. Rooth, D. Hu, and L. T. Smith (1992) Salinity-driven thermocline transients in a wind and thermohaline forced isopycnic coordinate model of the North Atlantic. Journal of Physical Oceanography, 22, 1486–1505.

    Article  Google Scholar 

  • Blumberg, A. F., and G. L. Mellor (1987) A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models. Vol. 4, N. Heaps, Ed., American Geophysical Union. 208 pp.

    Google Scholar 

  • Broecker, W.S., and T.-H. Peng, (1982) Tracers in the Sea. Lamont-Doherty Earth Observatory Publishers. 690 pages.

    Google Scholar 

  • Bryan, K. (1975) Three-dimensional numerical models of the ocean circulation. In Numerical Models of Ocean Circulation, National Academy of Sciences. Washington, D.C.

    Google Scholar 

  • Bryan, K. (1989) The design of numerical models of the ocean circulation. In Oceanic Circulation Models: Combining Data and Dynamics, edited by D.L.T. Anderson and J. Willebrand. pages 465–511.

    Chapter  Google Scholar 

  • Bryan, K. (1991a) Michael Cox (1941–1989): His pioneering contributions to ocean circulation modeling. Journal of Physical Oceanography, 21, 1259–1270.

    Article  Google Scholar 

  • Bryan, K. (1991b) Poleward heat transport in the ocean: a review of a hierarchy of models of increasing resolution. Tellus, 43AB, 104–115.

    Google Scholar 

  • Bryan, K. and J. L. Sarmiento (1985) Modeling ocean circulation. Advances in Geophysics, Volume 28A, 433–459.

    Article  Google Scholar 

  • Bryden, H. L., J. Candela, and T. H. Kinder (1994) Exchange through the Strait of Gibraltar, Progress in Oceanography, 33, 201–248.

    Article  Google Scholar 

  • Chassignet, E.P., and J. Verron, editors (1998) Ocean modeling and parameterization, NATO Advanced Study Institute, Kluwer Academic Publishers, 451 pages.

    Google Scholar 

  • Cushman-Roisin, B. (1994) Introduction to Geophysical Fluid Dynamics, Prentice-Hall Publishers. 320 pages.

    Google Scholar 

  • Dukowicz, J. K. and R. D. Smith (1994) Implicit free-surface method for the Bryan-CoxSemtner ocean model. Journal of Geophysical Research, 99, 7991–8014.

    Article  Google Scholar 

  • DYNAMO Group (1997) DYNAMO: Dynamics of North Atlantic models: simulation and assimilation with high resolution models. Institut Für Meereskunde an der Christian-AlbrechtsUniversität. Copies of this report are available from Institut Für Meereskunde an der Universität Kiel. Abt. Theoretische Ozeanographie. Düsternbrooker Weg 20. D-24105 Kiel, Germany.

    Google Scholar 

  • Fu, L.-L. and R. D. Smith (1996) Global ocean circulation from satellite altimetry and highresolution computer simulation. Bulletin of the American Meteorological Society, 77, 2625–2636.

    Article  Google Scholar 

  • Gent, P. R., and J. C. McWilliams (1990) Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20, 150–155.

    Article  Google Scholar 

  • Gent, P. R., J. Willebrand, T. McDougall, and J. C. McWilliams (1995) Parameterizing eddyinduced tracer transports in ocean circulation models. Journal of Physical Oceanography, 25, 463–474.

    Article  Google Scholar 

  • Gill, A. E. (1982) Atmosphere-Ocean Dynamics. Academic Press Inc. 662 pages.

    Google Scholar 

  • Griffies, S.M. (1998) The Gent-McWilliams skew-flux. Journal of Physical Oceanography, 28, 831–841.

    Article  Google Scholar 

  • Griffies, S.M., A. Gnanadesikan, R. C. Pacanowski, V. Larichev, J. K. Dukowicz, and R. D. Smith (1998) Isoneutral diffusion in a z-coordinate ocean model. Journal of Physical Oceanography 28, 805–830.

    Article  Google Scholar 

  • Griffies, S.M. and R.W. Hallberg (2000) Biharmonic friction with a Smagorinsky viscosity for use in large-scale eddy-permitting ocean models. Monthly Weather Review, 128, 2935–2946.

    Article  Google Scholar 

  • Griffies, S. M., R.C. Pacanowski, M. Schmidt, and V. Balaji (2000) Improved tracer conservation with a new explicit free surface method for z-coordinate ocean models. Monthly Weather Review in press 2001. Available from www.gfdl.noaa.gov/smg.html.

    Google Scholar 

  • Griffies, S.M., C. Böning, F.O. Bryan, E.P. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A.-M. Treguier, D. Webb (2001) Developments in ocean climate modeling. Ocean Modeling, 2, 123–192.

    Article  Google Scholar 

  • Haidvogel, D.B., and A. Beckmann (1999) Numerical Ocean Circulation Modeling. Imperial College Press. 300 pages.

    Google Scholar 

  • Haidvogel, D.B., and F. Bryan (1992) Ocean general circulation modeling. In Climate System Modeling, pages 371 412. Edited by K.E. Trenberth. Cambridge University Press, 788 pages.

    Google Scholar 

  • Haidvogel, D. B., J. L. Wilkin, and R. E. Young (1991) A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. Journal of Computational Physics, 94, 151–185.

    Article  Google Scholar 

  • Hallberg, R. (1995) Some aspects of the circulation in ocean basins with isopycnals intersecting the sloping boundaries, Ph.D thesis, University of Washington, Seattle, 244 pp.

    Google Scholar 

  • Hallberg, R. W. (1997) Stable split time stepping schemes for large-scale ocean modeling. Journal of Computational Physics, 135, 54–65.

    Article  Google Scholar 

  • Haltiner, G. J. and R. T. Williams (1980) Numerical Prediction and Dynamic Meteorology, Wiley.

    Google Scholar 

  • Haywood, J. M., R. J. Stoufer, R. T. Wetherald, S. Manabe, and V. Ramaswamy (1997) Transient response of a coupled model to estimated changes in greenhouse gas and sulfate concentrations. Geophysical Research Letters, 24, 1335–1338.

    Article  Google Scholar 

  • Higdon, R. L. and A. F. Bennett (1996) Stability analysis of operator splitting for large-scale ocean modeling. Journal of Computational Physics, 123, 311–329.

    Article  Google Scholar 

  • Holloway, G. (1989) Subgridscale representation. In D. L. T. Anderson and J. Willebrand (eds.), Oceanic Circulation Models: Combining Data and Dynamics. pages 513–593. Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Holloway, G. (1992) Representing Topographic Stress for Large-Scale Ocean Models. Journal of Physical Oceanography, 22, 1033–1046.

    Article  Google Scholar 

  • IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press

    Google Scholar 

  • Jackson, J.D. (1975) Classical Electrodynamics, Second edition. Wiley publishers.

    Google Scholar 

  • Jones, A., D.L. Roberts and M.J. Woodage (1999a) The indirect effects of anthropogenic aerosol simulated using a climate model with an interactive sulphur cycle. Hadley Centre Tech. Note 14. Hadley Center for Climate Prediction and Research, Meteorological Office, Bracknell RG12 2SY UK, pp39.

    Google Scholar 

  • Jones, P.D., M. New, D.E. Parker, S. Martin, and I.G. Rigor (1999b). Surface air temperature and its changes over the past 150 years. Review of Geophysics, 37: 173–200.

    Article  Google Scholar 

  • Kantha, L.H., and C.A. Clayson (2000a) Numerical Models of Oceans and Oceanic Processes, International Geophysics Series, vol. 66. Academic Press. 936 pages.

    Google Scholar 

  • Kantha, L.H., and C.A. Clayson (2000b) Small Scale Processes in Geophysical Fluid Flows, International Geophysics Series, vol. 67. Academic Press. 883 pages.

    Google Scholar 

  • Killworth, P. D., D. Stainforth, D. J. Webb, and S. M. Paterson (1991) The development of a free-surface Bryan-Cox-Semtner ocean model. Journal of Physical Oceanography, 21, 1333–1348.

    Article  Google Scholar 

  • Landau, L. D., Lifshitz, E. M. (1987) Fluid Mechanics. Course of Theoretical Physics, Volume 6. Pergamon Press, Oxford.

    Google Scholar 

  • Lean, J., J. Beer and R. Bradley (1995). Reconstruction of solar irradiance since 1600: Implications For climate change. Geophys. Res. Lett., 22, 3195–3198.

    Article  Google Scholar 

  • Levitus, S. (1982) Climatological atlas of the world ocean. NOAA Prof. Paper 13. 173 pages. U. S. Government Printing Office, Washington, D. C.

    Google Scholar 

  • McWilliams, J.C. (1996) Modeling the oceanic general circulation. Annual Review of Fluid Mechanics, 28, 215–248.

    Article  Google Scholar 

  • Müller, P. (1995) Ertel’s potential vorticity theorem in physical oceanography. Reviews of Geophysics, 33, 67–97.

    Article  Google Scholar 

  • Munk, W.H., and C. Wunsch (1998) The moon and mixing: abyssal recipes II. Deep Sea Research, 45, 1977–2010.

    Article  Google Scholar 

  • Oberhuber, J. M. (1993) Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model. Journal of Physical Oceanography, 23, 808–829.

    Article  Google Scholar 

  • O’Brien, J.J. (1986) Advanced Physical Oceanographic Numerical Modeling. D. Reidel Publishing Company.

    Google Scholar 

  • Pacanowski, R. C., and S. M. Griffies (1999) MOM 3.0 Manual, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA 08542. 680 pages. Available from http://www.gfdl.noaa.gov/MOM/MOM.html.

    Google Scholar 

  • Pedlosky, J. (1987) Geophysical Fluid Dynamics, 2nd edition. Springer-Verlag Publishers. 710 pages.

    Book  Google Scholar 

  • Philander, S.G. (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press. 293 pages. Philander, S.G. (1998) Is the Temperature Rising? The Uncertain Science of Global Warming. Princeton University Press. 262 pages.

    Google Scholar 

  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmidt (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96.

    Article  Google Scholar 

  • Pond, S., and K. Bryan (1976) Numerical models of the ocean circulation. Reviews of Geophysics and Space Physics, 14, 243–263.

    Article  Google Scholar 

  • Redi, M. H. (1982) Oceanic isopycnal mixing by coordinate rotation. Journal of Physical Oceanography, 12, 1154–1158.

    Article  Google Scholar 

  • Richardson, L. F. (1922) Weather Prediction by Numerical Process. Cambridge University Press, reprinted by Dover, 1965. 236 pages.

    Google Scholar 

  • Robinson, A. R., and M. Golnaraghi (1994) The Physical and Dynamical Oceanography of the Mediterranean Sea, in Ocean Processes in Climate Dynamics, P. Malanotte-Rizzoli and A. R. Robinson (editors), pp. 255–306, Kluwer Academic.

    Google Scholar 

  • Salmon, R. (1998) Lectures on Geophysical Fluid Dynamics, Oxford University Press. 378.

    Google Scholar 

  • Sato, M., J.E. Hansen, M.P. McCormick and J. Pollack (1993) Statospheric aerosol optical depths (1850–1990). J. Geophys. Res. 98, 22987–22994

    Article  Google Scholar 

  • Semtner, Jr., A. J. (1974) An oceanic general circulation model with bottom topography. In Numerical Simulation of Weather and Climate, Technical Report No. 9, UCLA Department of Meteorology.

    Google Scholar 

  • Smagorinsky, J. (1993) Some historical remarks on the use of nonlinear viscosities, in Large Eddy Simulation of Complex Engineering and Geophysical Flows, edited by B. Galperin and S. A. Orszag. Cambridge University Press.

    Google Scholar 

  • Stott, P.A., S.F.B. Tett, G.S. Jones, M.R. Allen, J.F.B. Mitchell and G.J. Jenkins (2000b) External control of twentieth century temperature variations by natural and anthropogenic forcings. Science, 15, 2133–2137.

    Article  Google Scholar 

  • Tett, S.F.B., G.S. Jones, P.A. Stott, D.C. Hill, J.F.B. Mitchell, M.R. Allen, W.J. Ingram, T.C. Johns, C.E. Johnson, A. Jones, D.L. Roberts, D.M.H. Sexton and M.J. Woodage (2000) Estimation of natural and anthropogenic contributions to 20th century. Hadley Center Tech Note 19, Hadley Center for Climate Prediction and Response, Meteorological Office, RG12 2SY, UK pp52.

    Google Scholar 

  • Wajsowicz, R. C. (1993) A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation. Journal of Computational Physics, 105, 333–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Griffies, S.M. (2003). An Introduction to Ocean Climate Modeling. In: Rodó, X., Comín, F.A. (eds) Global Climate. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05285-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05285-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07856-9

  • Online ISBN: 978-3-662-05285-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics