An Introduction to Ocean Climate Modeling

  • Stephen M. Griffies
Chapter

Abstract

This chapter introduces some of the science of numerical ocean climate modeling. The discussion pedagogical and self-contained, thus requiring little previous knowledge of numerical ocean modeling. It is geared towards the science, engineering, and/or mathematics student or researcher who wishes to garner a sense of the goals, methods, and some details of ocean climate modeling. Notably, it only presents a small hint at the large body of literature which supports the field of climate modeling. To do more justice would require many textbooks.

Keywords

Entropy Convection Ozone Phytoplankton Radioactive Isotope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel, J.R. (1987) Principles of Ocean Physics. International Geophysics Series, Volume 38. Academic Press. 634 pages.Google Scholar
  2. Aris, R. (1962) Vectors, Tensors and the Basic Equations of Fluid Mechanics, Dover publishing.Google Scholar
  3. Batchelor, G. K. (1967) An Introduction to Fluid Dynamics, Cambridge University Press. 615 pages.Google Scholar
  4. Bleck, R., C. Rooth, D. Hu, and L. T. Smith (1992) Salinity-driven thermocline transients in a wind and thermohaline forced isopycnic coordinate model of the North Atlantic. Journal of Physical Oceanography, 22, 1486–1505.CrossRefGoogle Scholar
  5. Blumberg, A. F., and G. L. Mellor (1987) A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models. Vol. 4, N. Heaps, Ed., American Geophysical Union. 208 pp.Google Scholar
  6. Broecker, W.S., and T.-H. Peng, (1982) Tracers in the Sea. Lamont-Doherty Earth Observatory Publishers. 690 pages.Google Scholar
  7. Bryan, K. (1975) Three-dimensional numerical models of the ocean circulation. In Numerical Models of Ocean Circulation, National Academy of Sciences. Washington, D.C.Google Scholar
  8. Bryan, K. (1989) The design of numerical models of the ocean circulation. In Oceanic Circulation Models: Combining Data and Dynamics, edited by D.L.T. Anderson and J. Willebrand. pages 465–511.CrossRefGoogle Scholar
  9. Bryan, K. (1991a) Michael Cox (1941–1989): His pioneering contributions to ocean circulation modeling. Journal of Physical Oceanography, 21, 1259–1270.CrossRefGoogle Scholar
  10. Bryan, K. (1991b) Poleward heat transport in the ocean: a review of a hierarchy of models of increasing resolution. Tellus, 43AB, 104–115.Google Scholar
  11. Bryan, K. and J. L. Sarmiento (1985) Modeling ocean circulation. Advances in Geophysics, Volume 28A, 433–459.CrossRefGoogle Scholar
  12. Bryden, H. L., J. Candela, and T. H. Kinder (1994) Exchange through the Strait of Gibraltar, Progress in Oceanography, 33, 201–248.CrossRefGoogle Scholar
  13. Chassignet, E.P., and J. Verron, editors (1998) Ocean modeling and parameterization, NATO Advanced Study Institute, Kluwer Academic Publishers, 451 pages.Google Scholar
  14. Cushman-Roisin, B. (1994) Introduction to Geophysical Fluid Dynamics, Prentice-Hall Publishers. 320 pages.Google Scholar
  15. Dukowicz, J. K. and R. D. Smith (1994) Implicit free-surface method for the Bryan-CoxSemtner ocean model. Journal of Geophysical Research, 99, 7991–8014.CrossRefGoogle Scholar
  16. DYNAMO Group (1997) DYNAMO: Dynamics of North Atlantic models: simulation and assimilation with high resolution models. Institut Für Meereskunde an der Christian-AlbrechtsUniversität. Copies of this report are available from Institut Für Meereskunde an der Universität Kiel. Abt. Theoretische Ozeanographie. Düsternbrooker Weg 20. D-24105 Kiel, Germany.Google Scholar
  17. Fu, L.-L. and R. D. Smith (1996) Global ocean circulation from satellite altimetry and highresolution computer simulation. Bulletin of the American Meteorological Society, 77, 2625–2636.CrossRefGoogle Scholar
  18. Gent, P. R., and J. C. McWilliams (1990) Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20, 150–155.CrossRefGoogle Scholar
  19. Gent, P. R., J. Willebrand, T. McDougall, and J. C. McWilliams (1995) Parameterizing eddyinduced tracer transports in ocean circulation models. Journal of Physical Oceanography, 25, 463–474.CrossRefGoogle Scholar
  20. Gill, A. E. (1982) Atmosphere-Ocean Dynamics. Academic Press Inc. 662 pages.Google Scholar
  21. Griffies, S.M. (1998) The Gent-McWilliams skew-flux. Journal of Physical Oceanography, 28, 831–841.CrossRefGoogle Scholar
  22. Griffies, S.M., A. Gnanadesikan, R. C. Pacanowski, V. Larichev, J. K. Dukowicz, and R. D. Smith (1998) Isoneutral diffusion in a z-coordinate ocean model. Journal of Physical Oceanography 28, 805–830.CrossRefGoogle Scholar
  23. Griffies, S.M. and R.W. Hallberg (2000) Biharmonic friction with a Smagorinsky viscosity for use in large-scale eddy-permitting ocean models. Monthly Weather Review, 128, 2935–2946.CrossRefGoogle Scholar
  24. Griffies, S. M., R.C. Pacanowski, M. Schmidt, and V. Balaji (2000) Improved tracer conservation with a new explicit free surface method for z-coordinate ocean models. Monthly Weather Review in press 2001. Available from www.gfdl.noaa.gov/smg.html.Google Scholar
  25. Griffies, S.M., C. Böning, F.O. Bryan, E.P. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A.-M. Treguier, D. Webb (2001) Developments in ocean climate modeling. Ocean Modeling, 2, 123–192.CrossRefGoogle Scholar
  26. Haidvogel, D.B., and A. Beckmann (1999) Numerical Ocean Circulation Modeling. Imperial College Press. 300 pages.Google Scholar
  27. Haidvogel, D.B., and F. Bryan (1992) Ocean general circulation modeling. In Climate System Modeling, pages 371 412. Edited by K.E. Trenberth. Cambridge University Press, 788 pages.Google Scholar
  28. Haidvogel, D. B., J. L. Wilkin, and R. E. Young (1991) A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. Journal of Computational Physics, 94, 151–185.CrossRefGoogle Scholar
  29. Hallberg, R. (1995) Some aspects of the circulation in ocean basins with isopycnals intersecting the sloping boundaries, Ph.D thesis, University of Washington, Seattle, 244 pp.Google Scholar
  30. Hallberg, R. W. (1997) Stable split time stepping schemes for large-scale ocean modeling. Journal of Computational Physics, 135, 54–65.CrossRefGoogle Scholar
  31. Haltiner, G. J. and R. T. Williams (1980) Numerical Prediction and Dynamic Meteorology, Wiley.Google Scholar
  32. Haywood, J. M., R. J. Stoufer, R. T. Wetherald, S. Manabe, and V. Ramaswamy (1997) Transient response of a coupled model to estimated changes in greenhouse gas and sulfate concentrations. Geophysical Research Letters, 24, 1335–1338.CrossRefGoogle Scholar
  33. Higdon, R. L. and A. F. Bennett (1996) Stability analysis of operator splitting for large-scale ocean modeling. Journal of Computational Physics, 123, 311–329.CrossRefGoogle Scholar
  34. Holloway, G. (1989) Subgridscale representation. In D. L. T. Anderson and J. Willebrand (eds.), Oceanic Circulation Models: Combining Data and Dynamics. pages 513–593. Kluwer Academic Publishers.CrossRefGoogle Scholar
  35. Holloway, G. (1992) Representing Topographic Stress for Large-Scale Ocean Models. Journal of Physical Oceanography, 22, 1033–1046.CrossRefGoogle Scholar
  36. IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University PressGoogle Scholar
  37. Jackson, J.D. (1975) Classical Electrodynamics, Second edition. Wiley publishers.Google Scholar
  38. Jones, A., D.L. Roberts and M.J. Woodage (1999a) The indirect effects of anthropogenic aerosol simulated using a climate model with an interactive sulphur cycle. Hadley Centre Tech. Note 14. Hadley Center for Climate Prediction and Research, Meteorological Office, Bracknell RG12 2SY UK, pp39.Google Scholar
  39. Jones, P.D., M. New, D.E. Parker, S. Martin, and I.G. Rigor (1999b). Surface air temperature and its changes over the past 150 years. Review of Geophysics, 37: 173–200.CrossRefGoogle Scholar
  40. Kantha, L.H., and C.A. Clayson (2000a) Numerical Models of Oceans and Oceanic Processes, International Geophysics Series, vol. 66. Academic Press. 936 pages.Google Scholar
  41. Kantha, L.H., and C.A. Clayson (2000b) Small Scale Processes in Geophysical Fluid Flows, International Geophysics Series, vol. 67. Academic Press. 883 pages.Google Scholar
  42. Killworth, P. D., D. Stainforth, D. J. Webb, and S. M. Paterson (1991) The development of a free-surface Bryan-Cox-Semtner ocean model. Journal of Physical Oceanography, 21, 1333–1348.CrossRefGoogle Scholar
  43. Landau, L. D., Lifshitz, E. M. (1987) Fluid Mechanics. Course of Theoretical Physics, Volume 6. Pergamon Press, Oxford.Google Scholar
  44. Lean, J., J. Beer and R. Bradley (1995). Reconstruction of solar irradiance since 1600: Implications For climate change. Geophys. Res. Lett., 22, 3195–3198.CrossRefGoogle Scholar
  45. Levitus, S. (1982) Climatological atlas of the world ocean. NOAA Prof. Paper 13. 173 pages. U. S. Government Printing Office, Washington, D. C.Google Scholar
  46. McWilliams, J.C. (1996) Modeling the oceanic general circulation. Annual Review of Fluid Mechanics, 28, 215–248.CrossRefGoogle Scholar
  47. Müller, P. (1995) Ertel’s potential vorticity theorem in physical oceanography. Reviews of Geophysics, 33, 67–97.CrossRefGoogle Scholar
  48. Munk, W.H., and C. Wunsch (1998) The moon and mixing: abyssal recipes II. Deep Sea Research, 45, 1977–2010.CrossRefGoogle Scholar
  49. Oberhuber, J. M. (1993) Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model. Journal of Physical Oceanography, 23, 808–829.CrossRefGoogle Scholar
  50. O’Brien, J.J. (1986) Advanced Physical Oceanographic Numerical Modeling. D. Reidel Publishing Company.Google Scholar
  51. Pacanowski, R. C., and S. M. Griffies (1999) MOM 3.0 Manual, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA 08542. 680 pages. Available from http://www.gfdl.noaa.gov/MOM/MOM.html.Google Scholar
  52. Pedlosky, J. (1987) Geophysical Fluid Dynamics, 2nd edition. Springer-Verlag Publishers. 710 pages.CrossRefGoogle Scholar
  53. Philander, S.G. (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press. 293 pages. Philander, S.G. (1998) Is the Temperature Rising? The Uncertain Science of Global Warming. Princeton University Press. 262 pages.Google Scholar
  54. Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmidt (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96.CrossRefGoogle Scholar
  55. Pond, S., and K. Bryan (1976) Numerical models of the ocean circulation. Reviews of Geophysics and Space Physics, 14, 243–263.CrossRefGoogle Scholar
  56. Redi, M. H. (1982) Oceanic isopycnal mixing by coordinate rotation. Journal of Physical Oceanography, 12, 1154–1158.CrossRefGoogle Scholar
  57. Richardson, L. F. (1922) Weather Prediction by Numerical Process. Cambridge University Press, reprinted by Dover, 1965. 236 pages.Google Scholar
  58. Robinson, A. R., and M. Golnaraghi (1994) The Physical and Dynamical Oceanography of the Mediterranean Sea, in Ocean Processes in Climate Dynamics, P. Malanotte-Rizzoli and A. R. Robinson (editors), pp. 255–306, Kluwer Academic.Google Scholar
  59. Salmon, R. (1998) Lectures on Geophysical Fluid Dynamics, Oxford University Press. 378.Google Scholar
  60. Sato, M., J.E. Hansen, M.P. McCormick and J. Pollack (1993) Statospheric aerosol optical depths (1850–1990). J. Geophys. Res. 98, 22987–22994CrossRefGoogle Scholar
  61. Semtner, Jr., A. J. (1974) An oceanic general circulation model with bottom topography. In Numerical Simulation of Weather and Climate, Technical Report No. 9, UCLA Department of Meteorology.Google Scholar
  62. Smagorinsky, J. (1993) Some historical remarks on the use of nonlinear viscosities, in Large Eddy Simulation of Complex Engineering and Geophysical Flows, edited by B. Galperin and S. A. Orszag. Cambridge University Press.Google Scholar
  63. Stott, P.A., S.F.B. Tett, G.S. Jones, M.R. Allen, J.F.B. Mitchell and G.J. Jenkins (2000b) External control of twentieth century temperature variations by natural and anthropogenic forcings. Science, 15, 2133–2137.CrossRefGoogle Scholar
  64. Tett, S.F.B., G.S. Jones, P.A. Stott, D.C. Hill, J.F.B. Mitchell, M.R. Allen, W.J. Ingram, T.C. Johns, C.E. Johnson, A. Jones, D.L. Roberts, D.M.H. Sexton and M.J. Woodage (2000) Estimation of natural and anthropogenic contributions to 20th century. Hadley Center Tech Note 19, Hadley Center for Climate Prediction and Response, Meteorological Office, RG12 2SY, UK pp52.Google Scholar
  65. Wajsowicz, R. C. (1993) A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation. Journal of Computational Physics, 105, 333–338.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Stephen M. Griffies
    • 1
  1. 1.Geophysical Fluid Dynamics LaboratoryNOAAPrincetonUSA

Personalised recommendations