Population Dynamics: A Mathematical Bird’s Eye View

  • Odo Diekmann
  • Markus Kirkilionis
Conference paper


The aim of this chapter is to provide interested outsiders with a brief (and therefore incomplete) overview of the kind of questions and insights concerning the dynamics of biological populations that can be formulated in mathematical language and derived by mathematical methods. Ideally the chapter should serve as an invitation to further reading and hence we give many pointers to the extensive literature. In order to highlight the ideas, we sacrifice the precise statement of assumptions (implying that some of our statements are sloppy from the point of view of the pedantic mathematician). Likewise we shall focus on the simplest examples that illustrate a key issue and not strive for generality. Our aim is to enlighten, not to impress. Moreover, we have not tried to hide our bias deriving from taste and experience, so the views we present are somewhat idiosyncratic.


Heteroclinic Cycle Positive Steady State Resource Concentration Structure Population Model Dynamic Energy Budget 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, R.M. and R.M. May, Infectious diseases of humans. Oxford University Press, 2000.Google Scholar
  2. 2.
    AUTO continuation package, see URL: Google Scholar
  3. 3.
    Behnke, H., Periodical cicades. J. Math. Biol., Vol. 40, p. 413–431 (2000).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Boer, M.P., B.W. Kooi and S.A.L.M. Kooijman, Multiple attractors and boundary crisis in a tri-trophic food chain. Math. Biosciences, Vol. 169, p. 109–128 (2001).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Boerlijst, M.C., Spirals and spots: novel evolutionary phenomena through spatial self-structuring. In: (eds), The geometry of ecological interaction. Simplifying spatial complexity. Cambridge University Press, 2000.Google Scholar
  6. 6.
    Bulmer, Periodical insects. Am. Nat., Vol. 3?, p. 1099–1117 (1977).Google Scholar
  7. 7.
    Butler, G.J., S.B. Hsu and P. Waltman, Coexistence of competing predators in a chemostat. J. Math. Biol., Vol. 17, p. 133–151 (1983).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Butler, G.J. and G.S.K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl.Math., Vol. 45, 1, p. 138–151 (1985).MathSciNetMATHGoogle Scholar
  9. 9.
    Butler, G.J. and G.S.K. Wolkowicz, Predator-mediated competition in the chemostat. J. Math. Biol, Vol. 24, p. 167–191 (1986).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Butler, G.J., S.B. Hsu and P. Waltman, A mathematical model of the chemostat with periodic washout rate. SIAM J.Appl.Math., Vol. 45, 3, p. 435–449 (1985).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Calsina, À. and J. Saldava, A model of physiologically structured population dynamics with nonlinear individual growth rate. J. Math. Biol., Vol. 33, p. 335–364 (1995).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Claessen, D., A.M. deRoos and L. Persson, Dwarfs and giants: cannibalism and competition in size-structured populations. Am. Nat., Vol. 155, p. 219–237 (2000).CrossRefGoogle Scholar
  13. 13.
    CONTENT continuation package for different computing platforms, see URL: Google Scholar
  14. 14.
    Cushing, J.M., An introduction to structured population dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics 71. SIAM, 1998.Google Scholar
  15. 15.
    DeAngelis, D. and L. Gross, Individual-based models and approaches in ecology: Populations, communities and ecosystems. Chapman Hall, New York. 1992.Google Scholar
  16. 16.
    Dieckmann, U., R. Law and J.A.J. Metz (eds.), The geometry of ecological interactions: Cambridge University Press, (2000).Google Scholar
  17. 17.
    Dieckmann, U., J.A.J. Metz, M.W. Sabelis and K. Sigmund, Adaptive dynamics of infectious diseases: in pursuit of virulence management. Cambridge Studies in Adaptive Dynamics Cambridge University Press, 2002.Google Scholar
  18. 18.
    Diekmann, O. F.B. Christiansen and R. Law (eds.) Special Issue on Evolutionary Dynamics. J. Math. Biol., Vol. 34, Issues 5/6, (1996).Google Scholar
  19. 19.
    Diekmann, O., The many facets of evolutionary dynamics. J. Biol. Systems, Vol. 5, p. 325–339 (1997).MATHCrossRefGoogle Scholar
  20. 20.
    Diekmann, O., M. Gyllenberg, J.A.J. Metz and H.R. Thieme, On the formulation and analysis of general deterministic structured population models. I. Linear theory. J. Math. Biol., Vol. 36, 4, p. 349–388 (1998).MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Diekmann, O. and H. Heesterbeek, Mathematical epidemiology of infectious diseases. Wiley, 2000.Google Scholar
  22. 22.
    Diekmann, O., M. Gyllenberg, H. Huang, M. Kirkilionis, J.A.J. Metz and H.R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math. Biol., Vol. 43, 2, p. 157–189 (2001).MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Geritz, S.A.H.,. Kisdi, G. Meszna and J.A.J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree.. Evol. Ecol., Vol. 12, 1, p. 35–57 (1989).Google Scholar
  24. 24.
    Geritz, S.A.H., J.A. J. Metz,. Kisdia and G. Meszna, Dynamics of adaptation and evolutionary branching. Phys. Rev. Letters, Vol. 78, p. 2024–2027 (1997).CrossRefGoogle Scholar
  25. 25.
    Geritz, S.A.H., M. Gyllenberg, F. J. A. Jacobs and K. Parvinen, Invasion dynamics and attractor inheritance. J. Math. Biol., Vol. 44, p. 548–560 (2002).MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Hale, J.K. and A.S. Somolinos, Competition for fluctuating nutrient. J. Math. Biol., Vol. 18, p. 255–280 (1983).MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Hanski, I.A. and M.E. Gilpin, Metapopulation biology. Ecology, genetics, and evolution. Academic Press, San Diego. 1997.MATHGoogle Scholar
  28. 28.
    Hsu, S.B., A competition model for a seasonally fluctuating nutrient. J. Math. Biol., Vol. p. (1980).Google Scholar
  29. 29.
    Hsu, S.B. and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat. SIAM J. Appl. Math., Vol. 53, p. 1026–1044 (1993).MATHGoogle Scholar
  30. 30.
    Huang, Y. and O. Diekmann, Predator migration in resone to prey density: what are the consequences?. J. Math. Biol., Vol. 43, p. 561–581 (2001).MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Huisman, J. and F.J. Weissing, Oscillations and chaos generated by competition for interactively essential resources. Ecological Research, Vol. 17, p. 175–181 (2002).CrossRefGoogle Scholar
  32. 32.
    Jäger, W., B. Tang and P. Waltman, Competition in the Gradostat. J. Math. Biol., Vol. 25, p. 23–42 (1987).MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Jansen, V.A.A. and A.M. de Roos, The role of space in reducing prey-predator cycles. In: U. Dieckmann, R. Law and M. a. J. Metz (eds), The geometry of ecological interaction. Simplifying spatial complexity. Cambridge University Press, 2000.Google Scholar
  34. 34.
    Kendall, D.G., Mathematical models of the spread of infections. In: Mathematics and computer sciences in biology and medicine. Medical Research Council, London, 1965.Google Scholar
  35. 35.
    Kirkilionis, M., O. Diekmann, B. Lisser, M. Nool, A. deRoos and B. Sommeijer, Numerical continuation of equilibria of physiologically structured population models. I. Theory. Mathematical Models and Methods in Applied Sciences, Vol. 11, 6, p. 1–27 (2001).MathSciNetCrossRefGoogle Scholar
  36. 36.
    de Koeijer, A., O. Diekmann and P. Reijnders, Modelling the spread of Phocine Distemper Virus among harbour seals.. Bull. Math. Biol., Vol. 60, 3, p. 585–596 (1998).CrossRefGoogle Scholar
  37. 37.
    Kooijman, S.A.L.M., Dynamic energy budgets in biological systems. Theory and applications in ecotoxicology.. Cambridge University Press, Cambridge, 1993.Google Scholar
  38. 38.
    Lovitt, R.W. and J.W.T. Wimpenny, The gradostat: a bidirectional compound chemostat and its application in microbiological research. J. Gen. Microbiol., Vol. 127, p. 261–268 (1981).Google Scholar
  39. 39.
    Maynard Smith, J., Mathematical Ideas in Biology. Cambridge Univ. Press, 1968.Google Scholar
  40. 40.
    Metz, J.A.J., O. Diekmann and (Editors), The dynamics of physiologically structured populations. Lecture Notes in Biomathematics 68, Springer-Verlag, Berlin and Heidelberg 1986.Google Scholar
  41. 41.
    Metz, J.A.J., S.A.H. Geritz, G. Meszna, F.J.A. Jacobs and J.S. v. Heerwaarden, Adaptive dynamics: A geometrical study of the consequences of nearly faithfull reproduction. In: S. J. v. Strien and S. M. Verduyn-Lunel (eds), Stochastic and spatial structures of dynamical systems. North Holland, Elsevier, 1996.Google Scholar
  42. 42.
    Metz, J.A.J., D. Mollison and F. van den Bosch, The dynamics of invasion waves. In: U. Dieckmann, R. Law and M. A. J. Metz (eds), The geometry of ecological interaction. Simplifying spatial complexity. Cambridge University Press, 2000.Google Scholar
  43. 43.
    Metz, J.A.J., S. Mylius and O. Diekmann, When does evolution optimise? On the relation between types of density dependence and evolutionary stable life history parameters. Report from: IIASA, Nr.: WP-96–04, 1996.Google Scholar
  44. 44.
    Monod, J., La technique de culture continue, theorie et application. Ann.Inst.Pasteur, Vol. 79, p. 390–410 (1950).Google Scholar
  45. 45.
    Mylius, S. and O. Diekmann, On evolutionary stable life histories, optimization and the need to be specific about density dependence. Oikos, Vol. 74, p. 218–284 (1995).CrossRefGoogle Scholar
  46. 46.
    Mylius, S.D. and O. Diekmann, The resident strikes back: invasion induced switching of resident attractor. J. theor. Biol., Vol. 211, p. 297–311 (2001).CrossRefGoogle Scholar
  47. 47.
    Neutel, A.-M., J.A.P. Heesterbeek and P.C. de Ruiter, Stability in real food webs: weak links in long loops. Science, Vol. 296, p. 1120–1123 (2002).CrossRefGoogle Scholar
  48. 48.
    Nisbet, R.M. and W.S.C. Gurney, Modelling fluctuating populations. John Wiley Sons, Singapore, 1982.MATHGoogle Scholar
  49. 49.
    Nowak, M.A. and R.M. May, Virus dynamics. Oxford University Press, 2000.Google Scholar
  50. 50.
    Pugliese, A., On the evolutionary coexistence of parasites. Mathematical Bio-sciences, Vol. 177 /178, p. 355–375 (2002)Google Scholar
  51. 51.
    Rand, D. A., H. B. Wilson and J. M. McClade, Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotype dynamics. Phil. Trans. R. Soc. Lond. B, Vol. 343, p. 261–283 (1994).CrossRefGoogle Scholar
  52. 52.
    de Roos, A.M. Numerical methods for structured population models: the escalator boxcar train. Num. Meth. Part. Diff. Equations, Vol. 4, p. 173–195 (1988).Google Scholar
  53. 53.
    de Roos, A.M. and L. Persson, Physiologically structured models–from versatile technique to ecological theory. Oikos, Vol. 94, p. 51–71 (2001).CrossRefGoogle Scholar
  54. 54.
    de Roos, A.M. and L. Persson, Competition in size-structured populations: mechanisms inducing cohort formation and population cycles. Theor. Pop. Biol., (2002, in press).Google Scholar
  55. 55.
    Segel, L.A., Modeling dynamic phenomena in molecular and cellular biology. Cambridge University Press, Cambridge, 1984.MATHGoogle Scholar
  56. 56.
    Smith, H. and B. Tang, Competition in the gradostat: the role of the communication rate. J.Math.Biol., Vol. 27, p. 139–165 (1989).MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Smith, H. L., Competitive coexistence in an oscillating chemostat. SIAM J.Appl.Math., Vol. 40, 3, p. 498–522 (1981).MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Smith, H.L. and P. Waltman, The theory of the chemostat Cambridge Studies in Mathematical Biology 13 Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
  59. 59.
    Thieme, H.R., Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol., Vol. 30, p. 755–763 (1992).MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Tucker, S.L. and S.O. Zimmermann, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math., Vol. 48, 3, p. 549–591 (1988).MathSciNetMATHGoogle Scholar
  61. 61.
    Tuljapurkar, S. and H. Caswell, Structured-population models in marine, terrestrial, and freshwater systems. Population and Community Biology Series 18. Chapman Hall, New York, 1997.Google Scholar
  62. 62.
    Yang, K. and H.I. Freedman, Uniqueness of limit cycles in Gause type models of predator-prey systems. Math. Biosciences, Vol. 88, p. 67–84 (1988).MATHCrossRefGoogle Scholar
  63. 63.
    Yodzis, P., Introduction to theoretical ecology. Harper Row, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Odo Diekmann
    • 1
  • Markus Kirkilionis
    • 2
  1. 1.Mathematisch InstituutUniversiteit UtrechtUtrechtThe Netherlands
  2. 2.Mathematics Department & Centre for Scientific ComputingUniversity of WarwickCoventryUK

Personalised recommendations