Skip to main content

From Molecular Dynamics to Conformation Dynamics in Drug Design

  • Conference paper
Book cover Trends in Nonlinear Analysis

Abstract

The design of pharmaceuticals, briefly called drug design, is a pyramidal multistage process, from a broad basis to an extremely narrow tip:

  • molecular recognition studies

  • intracellular impact studies

  • physiological investigations

  • animal experiments

  • clinical tests

  • market introduction

The basis level “molecular recognition studies”, in turn, consists of two parts: studies in the chemical lab and studies in the virtual lab by means of the computer, often named as computational drug design. The impact of this rather new scientific field cannot be overestimated: The cost of identifying a marketable drug out of a huge set of promising chemical substances is commonly estimated as 500 million Euro. If, at the basis level, the number of promising drug candidates could be halved, then the cost per successful marketable pharmaceutical would also roughly be halved, not to mention the reduction of “time to market”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Amadei, A.B.M. Linssen, H.J.C. Berendsen. Essential dynamics on proteins. Proteins 17, pp. 412–425 (1993).

    Article  Google Scholar 

  2. V. I. Arnold. Mathematical Methods of Classical Mechanics. Second edition. Springer, Heidelberg, New York (1989).

    Book  Google Scholar 

  3. M. Dellnitz, A. Hohmann. A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math. 75, pp. 293–317 (1997).

    MathSciNet  MATH  Google Scholar 

  4. M. Dellnitz, O. Junge. On the approximation of complicated dynamical behavior, SIAM J. Num. Anal. 36, pp. 491–515 (1999).

    Article  MathSciNet  Google Scholar 

  5. P. Deuflhard and F. Bornemann. Numerische Mathematik II. Gewöhnliche Differentialgleichungen. 2. Auflage. Walter de Gruyter, Berlin, New York (2002).

    Google Scholar 

  6. P. Deuflhard, F. Bornemann. Scientific Computing with Ordinary Differential Equations. Springer, Berlin, Heidelberg, New York (2002).

    Google Scholar 

  7. P. Deuflhard, M. Dellnitz, O. Junge, Ch. Schütte. Computation of essential molecular dynamics by subdivision techniques. In [8], pp. 98–115 (1999).

    Google Scholar 

  8. P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, R. D. Skeel, editors. Computational Molecular Dynamics: Challenges, Methods, Ideas, volume 4 of Lecture Notes in Computational Science and Engineering. Springer, Berlin, Heidelberg, New York (1999).

    Google Scholar 

  9. P. Deuflhard, A. Hohmann. Numerische Mathematik I. Eine algorithmisch orientierte Einführung. 3. Auflage. Walter de Gruyter, Berlin, New York (2002).

    Google Scholar 

  10. P. Deuflhard,A. Hohmann. Introduction to Scientific Computing. 2nd edition. Springer, Berlin, Heidelberg, New York (2002).

    Google Scholar 

  11. P. Deuflhard, W. Huisinga, A. Fischer, Ch. Schütte. Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Lin. Alg. Appl. 315, pp. 39–59 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Fischer, F. Cordes, C. Schütte. Hybrid Monte Carlo with adaptive temperature in mixed-canonical ensemble: Efficient conformation analysis of RNA. J. Comput. Chem. 19, pp. 1689–1697 (1998).

    Article  Google Scholar 

  13. A. Fischer, Ch. Schütte, P. Deuflhard, and F. Cordes. Hierarchical uncoupling-coupling of metastable conformations. In [24], (2002).

    Google Scholar 

  14. T. Gallìat. Adaptive Multilevel Cluster Analysis by Self-Organizing Box Maps. Submitted as PhD thesis, Department of Mathematics and Computer Ccience, Free University of Berlin, (March 2002).

    Google Scholar 

  15. T. Galliat, P. Deuflhard, R. Roitzsch, F. Cordes. Automatic identification of metastable conformations via self-organized neural networks. In [24], (2002).

    Google Scholar 

  16. T. Galliat, W. Huisinga, P. Deuflhard. Self-organizing maps combined with eigenmode analysis for automated cluster identification. In H. Bothe and R. Rojas, editors, Proceedings of the 2nd International ICSC Symposium on Neural Computation, Academic Press, pp. 227–232 (2000).

    Google Scholar 

  17. L. Greengard, V. Rokhlin On the evaluation of electrostatic interactions in molecular modeling. Chem. Ser. 29A, pp. 139–144 (1989).

    Google Scholar 

  18. T.A. Halgren. Merck molecular force field. I-V. J. Comp. Chem., 17, pp. 490641 (1996).

    Google Scholar 

  19. T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin, Heidelberg, New York (1995).

    Google Scholar 

  20. T. Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, New York, 3rd edition (2001).

    Google Scholar 

  21. C. D. Meyer. Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev., 31, pp. 240–272 (1989).

    Article  MathSciNet  Google Scholar 

  22. J. Sanz-Serna, M. Calvo. Numerical Hamiltonian Problems. Chapman and Hall, London, UK (1994).

    MATH  Google Scholar 

  23. T. Schlick. Some Failures and Successes of Long-Time Approaches to Biomolecular Simulations. In [8], pp. 227–262 (1999).

    Google Scholar 

  24. T. Schlick, H. H. Gan, editors. Computational Methods for Macromolecules: Challenges and Applications - Proc. of the 3rd Intern. Workshop on Algorithms for Macromolecular Modelling, New York, 2000. Springer, Berlin, Heidelberg, New York, 2002, in press.

    Google Scholar 

  25. Ch. Schütte. Conformation Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules. Habilitation thesis, Department of Mathematics and Computer Science, Free University of Berlin, 1998. Available as ZIB-Report SC-99–18 via http://www.zib.de/bib/pub/pw/.

    Google Scholar 

  26. Ch. Schütte, A. Fischer, W. Huisinga, P. Deuflhard. A direct approach to conformation dynamics based on hybrid Monte Carlo. J. Comput. Phys., Special Issue on Computational Biophysics, 151, pp. 146–168 (1999).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Good Bill Hunting, Chief of Mount Highdle tribe, on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deuflhard, P. (2003). From Molecular Dynamics to Conformation Dynamics in Drug Design. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds) Trends in Nonlinear Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05281-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05281-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07916-0

  • Online ISBN: 978-3-662-05281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics