Skip to main content

Spatio-Temporal Dynamics of Reaction-Diffusion Patterns

  • Conference paper
Trends in Nonlinear Analysis

Abstract

In this survey we look at parabolic partial differential equations from a dynamical systems point of view. With origins deeply rooted in celestial mechanics, and many modern aspects traceable to the monumental influence of Poincaré, dynamical systems theory is mainly concerned with the global time evolution T(t)u 0 of points u 0 — and of sets of such points — in a more or less abstract phase space X. The success of dynamical concepts such as gradient flows, invariant manifolds, ergodicity, shift dynamics, etc. during the past century has been enormous — both as measured by achievement, and by vitality in terms of newly emerging questions and long-standing open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abraham and J. Robbin. Transversal Mappings and Flows. Benjamin Inc., Amsterdam, 1967.

    MATH  Google Scholar 

  2. N. Alikakos. An application of the invariance principle to reaction diffusion equations. J. Diff. Eqns. 33 (1979), 201–225.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Alikakos, P.W. Bates, and G. Fusco. Slow motion for the Cahn-Hilliard equation in one space dimension. Preprint (1989).

    Google Scholar 

  4. E.L. Allgower and K. Georg. Numerical Continuation Methods. An Introduction. Springer-Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  5. S. Angenent. The Morse-Smale property for a semi-linear parabolic equation. J. Diff. Eqns. 62 (1986), 427–442.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Angenent. The zero set of a solution of a parabolic equation. Grelle J. reine angew. Math., 390 (1988), 79–96.

    MathSciNet  MATH  Google Scholar 

  7. S. Angenent. Parabolic equations for curves on surfaces. I: curves with p-integrable curvature. Ann. Math. 132 (1990), 451–483.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Angenent. Parabolic equations for curves on surfaces. II: Intersections, blow-up and generalized solutions. Ann. Math., 133 (1991), 171–215.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Angenent. A variational interpretation of Melnikov’s function and exponentially small separatrix splitting. Lond. Math. Soc. Lect. Note Ser., 192 (1993), 5–35.

    Google Scholar 

  10. S. Angenent and B. Fiedler. The dynamics of rotating waves in scalar reaction diffusion equations. Trans. Amer. Math. Soc., 307 (1988), 545–568.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Angenent, J. Mallet-Paret, and L.A. Peletier. Stable transition layers in a semilinear boundary value problem. J. Diff. Eqns. 67 (1987), 212–242.

    Article  MathSciNet  MATH  Google Scholar 

  12. D.V. Anosov. Dynamical Systems with Hyperbolic Behaviour. Enc. Math. Sc. 66, Dynamical Systems IX. Springer-Verlag, New York, 1991.

    Google Scholar 

  13. D. V. Anosov and V. I. Arnol’d. Ordinary differential equations and smooth dynamical systems. Enc. Math. Sc. 1, Dynamical Systems I. Springer-Verlag, Berlin, 1988.

    Book  Google Scholar 

  14. I. S. Aranson, L. Aranson, L. Kramer, and A. Weber. Stability limits of spirals and travelling waves in nonequilibrium media. Phys. Rev. A 46 (1992), 2992–2995.

    Article  Google Scholar 

  15. I.S. Aranson, L. Kramer, and A. Weber. Core instability and spatiotemporal intermittency of spiral waves in oscillatory media. Phys. Rev. Lett. 72, 2316 (1994).

    Article  Google Scholar 

  16. V.I. Arnol’d. Theory of Bifurcations and Catastrophes. Enc. Math. Sc. 5, Dynamical Systems V. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  17. V.I. Arnol’d. Singularity Theory I. Enc. Math. Sc. 6, Dynamical Systems VI. Springer-Verlag, New York, 1993.

    Google Scholar 

  18. V.I. Arnol’d. Bifurcation Theory and Catastrophe Theory. Enc. Math. Sc. 5, Dynamical Systems V. Springer-Verlag, New York, 1994.

    Google Scholar 

  19. V.I. Arnol’d. Singularity theory II, Applications. Enc. Math. Sc. 8, Dynamical Systems VIII. Springer-Verlag, New York, 1993.

    Google Scholar 

  20. V.I. Arnol’d, S.M. Gusejn-Zade, and A.N. Varchenko. Singularities of Differentiable Maps. Volume I: The Classification of Critical points, Caustics and Wave Fronts. Birkhäuser, Boston, 1985.

    Google Scholar 

  21. V.I. Arnol’d, V.V. Kozlov, and A.I. Neishtadt. Mathematical Aspects of Classical and Celestial Mechanics. Enc. Math. Sc. 3, Dynamical Systems III. Springer-Verlag, New York, 1988.

    Book  Google Scholar 

  22. V.I. Arnol’d and S.P. Novikov. Symplectic Geometry and its Applications. Enc. Math. Sc. 4, Dynamical Systems IV. Springer-Verlag, New York, 1990.

    Google Scholar 

  23. V.I. Arnol’d and S.P. Novikov. Integrable Systems. Nonholonomic Dynamical Systems. Enc. Math. Sc. 16, Dynamical Systems VII. Springer-Verlag, New York, 1994.

    Google Scholar 

  24. V.I. Arnol’d and M.I. Vishik et al. Some solved and unsolved problems in the theory of differential equations and mathematical physics. Russian Math. Surveys, 44 (1989), 157–171.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Ashwin and I. Melbourne. Noncompact drift for relative equilibria and relative periodic orbits. Nonlinearity, 10 (1997), 595–616.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Ashwin, I. Melbourne, and M. Nicol. Drift bifurcations of relative equilibria and transitions of spiral waves. Nonlinearity 12 (1999), 741–755.

    Google Scholar 

  27. P. Ashwin, I. Melbourne, and M. Nicol. Hypermeander of spirals: local bifurcations and statistical properties. Phys. D 156 (2001), 364–382.

    Google Scholar 

  28. A.V. Babin and M.I. Vishik. Attractors of Evolution Equations. North Holland, Amsterdam, 1992.

    MATH  Google Scholar 

  29. M. Bär and M. Eiswirth. Turbulence due to spiral breakup in a continuous excitable medium. Phys. Rev. E 48 (1993), 1635–1637.

    Google Scholar 

  30. M. Bär and M. Or-Guil. Alternative scenarios of spiral breakup in a reaction-diffusion model with excitable and oscillatory dynamics. Phys. Rev. Lett. 82 (1999), 1160–1163.

    Article  Google Scholar 

  31. D. Barkley. Linear stability analysis of rotating spiral waves in excitable media. Phys. Rev. Lett. 68 (1992), 2090–2093.

    Article  Google Scholar 

  32. D. Barkley. Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72 (1994), 164–167.

    Article  Google Scholar 

  33. D. Barkley. Spiral meandering. In R. Kapral and K. Showalter (eds.), Chemical Waves and Patterns, p.163–190, Kluwer, 1995.

    Google Scholar 

  34. G. Barles, H.M. Soner, and P.E. Souganidis. Front propagation and phase field theory. SIAM J. Contr. Optim. 31 (1993), 439–469.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Belmonte, J.-M. Flesselles, and Q. Ouyang. Experimental Survey of Spiral Dynamics in the Belousov-Zhabotinsky Reaction. J. Physique II 7 (1997), 1425–1468.

    Google Scholar 

  36. H. Berestycki and L. Nirenberg. Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains. Coll. Analysis, et cetera, 115–164, Academic Press Boston, 1990.

    Google Scholar 

  37. I. Berkes and W. Philipp. Trigonometric series and uniform distribution mod 1. Stud. Sci. Math. Hung. 31 (1996), 15–25.

    MathSciNet  MATH  Google Scholar 

  38. W.J. Beyn. The effect of discretization on homoclinic orbits. In Bifurcation: Analysis, Algorithms, Applications 1–8, T. Küpper et al., (eds.). Birkhäuser Verlag, Basel, 1987.

    Google Scholar 

  39. W.-J. Beyn. The numerical computation of connecting orbits in dynamical systems. IMA Z. Numer. Anal, 9 (1990), 379–405.

    Article  MathSciNet  Google Scholar 

  40. V. A. Biktashev, A. V. Holden, and E. V. Nikolaev. Spiral wave meander and symmetry of the plane. Preprint, University of Leeds, 1996.

    Google Scholar 

  41. G. Birkhoff and G.-C. Rota. Ordinary differential equations. Ginn and Company, Boston, 1962.

    MATH  Google Scholar 

  42. P. Blancheau, J. Boissonade, and P. De Kepper. Theoretical and experimental studies of bistability in the chloride-dioxide-iodide reaction. Physica D 147 (2000), 283–299.

    Article  Google Scholar 

  43. R. Bogdanov. Bifurcation of the limit cycle of a family of plane vector fields. Sel. Mat. Soy. 1 (1981), 373–387.

    MATH  Google Scholar 

  44. R. Bogdanov. Versal deformations of a singularity of a vector field on the plane in the case of zero eigenvalues. Sel. Mat. Soy., 1 (1981), 389–421.

    Google Scholar 

  45. M. Braune and H. Engel. Compound rotation of spiral waves in a lightsensitive Belousov-Zhabotinsky medium. Chem. Phys. Lett. 204 (1993), 257–264.

    Article  Google Scholar 

  46. R. J. Briggs. Electron-Steam Interaction With Plasmas. MIT press, Cambridge, 1964.

    Google Scholar 

  47. T. Bröcker and T. tom Dieck. Representations of Compact Lie Groups. Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  48. H.W. Broer, B. Krauskopf, and G. Vegter. Global Analysis of Dynamical Systems. IOP Publishing, Bristol, 2001.

    Book  MATH  Google Scholar 

  49. H. Broer and T. Takens (eds.). Handbook of Dynamical Systems 3. Elsevier, Amsterdam, in preparation 2002.

    Google Scholar 

  50. P. Brunovskÿ. The attracor of the scalar reaction diffusion equation is a smooth graph. J. Dynamics and Differential Equations, 2 (1990), 293–323.

    Article  Google Scholar 

  51. P. Brunovskÿ and S-N Chow. Generic properties of stationary state solutions of reaction-diffusion equations. J. Diff. Eqns. 53 (1984), 1–23.

    Article  MATH  Google Scholar 

  52. P. Brunovskÿ and B. Fiedler. Numbers of zeros on invariant manifolds in reaction-diffusion equations. Nonlin. Analysis, TMA, 10 (1986), 179–194.

    MATH  Google Scholar 

  53. P. Brunovskÿ and B. Fiedler. Connecting orbits in scalar reaction diffusion equations. Dynamics Reported 1 (1988), 57–89.

    Google Scholar 

  54. P. Brunovskÿ and B. Fiedler. Connecting orbits in scalar reaction diffusion equations II: The complete solution. J. Diff. Eqns. 81 (1989), 106–135.

    Article  MATH  Google Scholar 

  55. P. Brunovskÿ, P. Polâcik, and B. Sandstede. Convergence in general parabolic equations in one space dimension. Nonl. Analysis TMA 18 (1992), 209–215.

    Article  MATH  Google Scholar 

  56. A. Calsina, X. Mora and J. Solà-Morales. The dynamical approach to elliptic problems in cylindrical domains and a study of their parabolic singular limit. J. Diff. Eqns. 102 (1993), 244–304.

    Article  MATH  Google Scholar 

  57. J. Carr and R. Pego.Invariant manifolds for metastable patterns in ust e 2 usxxf(u). Proc. Roy. Soc. Edinburgh A 116 (1990), 133–160.

    Google Scholar 

  58. V. Castets, E. Dulos, J. Boissonade, and P. De Kepper. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64 (1990), 2953–2956.

    Article  Google Scholar 

  59. N. Chafee and E. Infante. A bifurcation problem for a nonlinear parabolic equation. J. Applicable Analysis 4 (1974). 17–37.

    Article  MathSciNet  MATH  Google Scholar 

  60. X.-Y. Chen. A strong unique continuation theorem for parabolic equations. Math. Ann. 311 (1998), 603–630.

    Article  MathSciNet  MATH  Google Scholar 

  61. V.V. Chepyzhov and M.I. Vishik. Attractors for Equations of Mathematical Physics. Colloq. AMS, Providence, 2002.

    Google Scholar 

  62. P. Chossat and R. Lauterbach. Methods in Equivariant Bifurcations and Dynamical Systems. World Scientific, Singapore, 2000.

    Book  MATH  Google Scholar 

  63. S.-N. Chow and J. K. Hale. Methods of Bifurcation Theory. Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  64. P. Collet and J.-P. Eckmann. Proof of the marginal stability bound for the Swift-Hohenberg equation and related equations. Preprint, 2000.

    Google Scholar 

  65. W.A. Coppel. Dichotomies and reducibility II. J. Diff. Eqns. 4 (1968), 386–398.

    Article  MathSciNet  MATH  Google Scholar 

  66. W.A. Coppel. Dichotomies in Stability Theory. Lect. Notes Math. 629, Springer, Berlin, 1978.

    Google Scholar 

  67. M.C. Cross and P.C. Hohenberg. Pattern formation outside equilibrium. Rev. Modern Phys. 65 (1993), 851–1112.

    Article  Google Scholar 

  68. J. Damon. Generic properties of solutions to partial differential equations. Arch. Rat. Mech. Analysis, 140 (1997), 353–403.

    Article  MathSciNet  MATH  Google Scholar 

  69. E.N. Dancer and P. Polâcik. Realization of vector fields and dynamics of spatially homogeneous parabolic equations. Mein. AMS, Providence, 2002, to appear.

    Google Scholar 

  70. G. Dangelmayr, B. Fiedler, K. Kirchgässner, and A. Mielke. Dynamics of Nonlinear Waves in Dissipative Systems: Reduction, Bifurcation and Stability. Pitman 352, Boston, 1996.

    Google Scholar 

  71. M. Dellnitz, M. Golubitsky, A. Hohmann,and I. Stewart. Spirals in scalar reaction-diffusion equations. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1487–1501.

    Article  MathSciNet  MATH  Google Scholar 

  72. K. Deimling. Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  73. P. de Kepper, J.-J. Perraud, B. Rudovics,and E. Dulos. Experimental study of stationary Turing patterns and their interaction with traveling waves in a chemical system. Int. J. Bifurcation Chaos Appl. Sci. Eng. 4 (1994), 1215–1231.

    Article  MATH  Google Scholar 

  74. O. Diekmann, S.A. v. Gils, S.M. Verduyn Lund, and H.-O. Walther. Delay Equations. Functional-, Complex-, and Nonlinear Analysis. Springer-Verlag, New York, 1995.

    Google Scholar 

  75. E. J. Doedel and M. J. Friedman. Numerical computation of heteroclinic orbits. J. Comp. Appl. Math. 26 (1989), 155–170.

    Google Scholar 

  76. E. J. Doedel and M. J. Friedman. Numerical computation and continuation of invariant manifolds connecting fixed points. SIAM J. Numer. Anal. 28 (1991), 789–808.

    Article  MathSciNet  MATH  Google Scholar 

  77. M. Dowle, M. Mantel, and D. Barkley. Fast simulations of waves in three-dimensional excitable media. Int. J. Bifur. Chaos, 7 (1997), 2529–2546.

    Article  MathSciNet  MATH  Google Scholar 

  78. B.A. Dubrovin, A.T. Fomenko, and S.P. Novikov. Modern Geometry -Methods and Applications. Part 2: The Geometry and Topology of Manifolds. Springer-Verlag, New York, 1985.

    Book  MATH  Google Scholar 

  79. S.-I. Ei and E. Yanagida. Slow dynamics of interfaces in the allen-cahn equation on a strip-like domain. SIAM J. Math. Anal., 29 (1998), 555–595.

    Article  MathSciNet  MATH  Google Scholar 

  80. C. Elphick, E. Tirapegui, M.E. Brachet, P. Coullet, and G. Moss. A simple global characerization for normal forms of singular vector fields. Physica 29D (1987), 95–127.

    MathSciNet  MATH  Google Scholar 

  81. N. Fenichel. Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21 (1971), 193–226.

    Article  MathSciNet  MATH  Google Scholar 

  82. N. Fenichel. Asymptotic stability with rate conditions. Indiana Univ. Math. J. 23 (1974), 1109–1137.

    Article  MathSciNet  MATH  Google Scholar 

  83. N. Fenichel. Asymptotic stability with rate conditions, II. Indiana Univ. Math. J. 26 (1977), 81–93.

    Article  MathSciNet  MATH  Google Scholar 

  84. N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eqns., 31 (1979), 53–98.

    Article  MathSciNet  MATH  Google Scholar 

  85. B. Fiedler. Global Bifurcation of Periodic Solutions with Symmetry. Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  86. B. Fiedler. Discrete Ljapunov functionals and w-limit sets. Math. Mod. Num. Analysis, 23 (1989), 415–431.

    MathSciNet  MATH  Google Scholar 

  87. B. Fiedler. Global attractors of one-dimensional parabolic equations: sixteen examples. Tatra Mountains Math. Publ., 4 (1994), 67–92.

    MathSciNet  MATH  Google Scholar 

  88. B. Fiedler. Do global attractors depend on boundary conditions? Doc. Math. 1 (1996), 215–228.

    MathSciNet  MATH  Google Scholar 

  89. B. Fiedler (ed.) Handbook of Dynamical Systems 2, Elsevier, Amsterdam. In press.

    Google Scholar 

  90. FiGe98] B. Fiedler and T. Gedeon. A class of convergent neural network dynamics. Physica D,111 (1998), 288–294,.

    Google Scholar 

  91. B. Fiedler and T. Gedeon. A Lyapunov function for tridiagonal competitive-cooperative systems. SIAM J. Math Analysis 30 (1999), 469–478.

    Article  MathSciNet  MATH  Google Scholar 

  92. B. Fiedler, K. Gröger, and J. Sprekels (eds.). Equadiff 99. International Conference on Differential Equations, Berlin 1999. Vol.1,2. World Scientific, Singapore, 2000.

    Google Scholar 

  93. B. Fiedler and J. Mallet-Paret. Connections between Morse sets for delay-differential equations. J. reine angew. Math., 397: 23–41, (1989).

    MathSciNet  MATH  Google Scholar 

  94. B. Fiedler and J. Mallet-Paret. A Poincaré-Bendixson theorem for scalar reaction diffusion equations. Arch. Rat. Mech. Analysis 107 (1989), 325–345.

    Article  MathSciNet  MATH  Google Scholar 

  95. B. Fiedler and R.-M. Mantel. Crossover collision of core filaments in three-dimensional scroll wave patterns. Doc. Math. 5 (2000), 695–731.

    MathSciNet  MATH  Google Scholar 

  96. B. Fiedler and P. Polâcik. Complicated dynamics of scalar reaction diffusion equations with a nonlocal term. Proc. Royal Soc. Edinburgh 115A (1990), 167–192.

    Article  MATH  Google Scholar 

  97. B. Fiedler and C. Rocha. Heteroclinic orbits of semilinear parabolic equations. J. Diff. Eq. 125 (1996), 239–281.

    Article  MathSciNet  MATH  Google Scholar 

  98. B. Fiedler and C. Rocha. Realization of meander permutations by boundary value problems. J. Diff. Eqns. 156 (1999), 282–308.

    Article  MathSciNet  MATH  Google Scholar 

  99. B. Fiedler and C. Rocha. Orbit equivalence of global attractors of semi-linear parabolic differential equations. Trans. Amer. Math. Soc., 352 (2000), 257–284.

    Article  MathSciNet  MATH  Google Scholar 

  100. B. Fiedler, C. Rocha, D. Salazar, and J. Sol-Morales. A note on the dynamics of piecewise-autonomous bistable parabolic equations. Comm. Fields Inst. (2002), in press.

    Google Scholar 

  101. B. Fiedler, C. Rocha, and M. Wolfrum. Heteroclinic connections of S1equivariant parabolic equations on the circle. In preparation, 2002.

    Google Scholar 

  102. B. Fiedler, B. Sandstede, A. Scheel, and C. Wulff. Bifurcation from relative equilibria of noncompact group actions: skew products, meanders and drifts. Doc. Math. J. DMV 1(1996), 479–505. See also http://www. mathematik. uni-bielef eld. de/documenta/vol-01 /20. ps. gz

    Google Scholar 

  103. B. Fiedler, A. Scheel, and M. Vishik. Large patterns of elliptic systems in infinite cylinders. J. Math. Pures Appl. 77 (1998), 879–907.

    MathSciNet  MATH  Google Scholar 

  104. B. Fiedler and D. Turaev. Normal forms, resonances, and meandering tip motions near relative equilibria of Euclidean group actions. Arch. Rat. Mech. Anal. 145 (1998), 129–159.

    Article  MathSciNet  MATH  Google Scholar 

  105. B. Fiedler and M. Vishik. Quantitative homogenization of analytic semi-groups and reaction diffusion equations with diophantine spatial frequencies. Adv. in Diff. Eqns. 6 (2001), 1377–1408.

    Google Scholar 

  106. B. Fiedler and M. Vishik. Quantitative homogenization of global at-tractors for reaction-diffusion systems with rapidly oscillating terms. Preprint, 2001.

    Google Scholar 

  107. P.C. Fife. Dynamics of internal layers and diffusive interfaces, CBMS-NSF Reg. Conf. Ser. Appl. Math. 53, 1988.

    Google Scholar 

  108. G. Fischer. Zentrumsmannigfaltigkeiten bei elliptischen Differentialgleichungen. Math. Nachr. 115 (1984), 137–157.

    Article  MathSciNet  MATH  Google Scholar 

  109. A. Friedman. Partial Differential Equations of Parabolic Type. Prentice Hall, Englewood Cliffs, New Jersey, 1964.

    Google Scholar 

  110. G. Fusco and J.K. Hale. Slow-motion manifolds, dormant instability, and singular perturbations. J. Dyn. Diff. Eqns. 1 (1989), 75–94.

    Article  MathSciNet  MATH  Google Scholar 

  111. G. Fusco and W.M. Oliva. Jacobi matrices and transversality. Proc. Royal Soc. Edinburgh A 109 (1988), 231–243.

    Article  MathSciNet  MATH  Google Scholar 

  112. G. Fusco and C. Rocha. A permutation related to the dynamics of a scalar parabolic PDE. J. Diff. Eqns. 91 (1991), 75–94.

    Article  MathSciNet  Google Scholar 

  113. M. Gage and R.S. Hamilton. The heat equation shrinking convex plane curves. J. Diff. Geom. 23 (1986), 69–96.

    MathSciNet  MATH  Google Scholar 

  114. T. Gallay and S. Slijepcevic. Personal communication, (2002).

    Google Scholar 

  115. M. Giaquinta and S. Hildebrandt. Calculus of Variations 1. The Lagrangian Formalism. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  116. M. Giaquinta and S. Hildebrandt. Calculus of Variations 2. The Hamiltonian Formalism. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  117. M. Golubitsky, E. Knobloch, and I. Stewart. Target patterns and spirals in planar reaction-diffusion systems. J. Nonlinear Sci. 10 (2000), 333–354.

    Article  MathSciNet  MATH  Google Scholar 

  118. M. Golubitsky, V. LeBlanc, and I. Melbourne. Meandering of the spiral tip: an alternative approach. J. Nonl. Sci. 7 (1997), 557–586.

    Article  MathSciNet  MATH  Google Scholar 

  119. M. Golubitsky and D.G. Schaeffer. Singularities and Groups in Bifurcation Theory I. Springer-Verlag, 1985.

    Google Scholar 

  120. M. Golubitsky, I. Stewart, and D.G. Schaeffer. Singularities and Groups in Bifurcation Theory II. Springer-Verlag, New York, 1988.

    Book  MATH  Google Scholar 

  121. A. Goryachev, H. Chaté, and R. Kapral. Synchronization defects and broken symmetry in spiral waves. Phys. Rev. Lett. 80 (1998), 873–876.

    Article  Google Scholar 

  122. M. A. Grayson. Shortening embedded curves. Ann. Math. 129 (1989), 71–111.

    Article  MathSciNet  MATH  Google Scholar 

  123. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.

    Google Scholar 

  124. G. Haas, M. Bär, and I.G. Kevrekidis et al. Observation of front bifurcations in controlled geometries: From one to two dimensions. Phys. Rev. Lett. 75 (1995), 3560–3563.

    Article  Google Scholar 

  125. P.S. Hagan. Spiral waves in reaction-diffusion equations. SIAM J. Appl. Math. 42 (1982), 762–786.

    MathSciNet  MATH  Google Scholar 

  126. J.K. Hale. Ordinary Differential Equations. John Wiley Sons, New York, 1969.

    MATH  Google Scholar 

  127. J.K. Hale. Flows on centre manifolds for scalar functional differential equations. Proc. R. Soc. Edinb., Sect. A 101 (1985), 193–201.

    Article  MathSciNet  MATH  Google Scholar 

  128. J.K. Hale. Asymptotic Behavior of Dissipative Systems. Math. Surv. 25. AMS Publications, Providence, 1988.

    Google Scholar 

  129. J.K. Hale and G. Raugel. Reaction-diffusion equation on thin domains. J. Math. Pures Appl. 71 (1992), 33–95.

    MathSciNet  MATH  Google Scholar 

  130. J. Härterich. Attractors of Viscous Balance Laws. Dissertation, Freie Universität Berlin, 1997.

    Google Scholar 

  131. J. Härterich. Attractors of viscous balance laws: Uniform estimates for the dimension. J. Diff. Eqns. 142 (1998), 188–211.

    Article  MATH  Google Scholar 

  132. J. Härterich. Equilibrium solutions of viscous scalar balance laws with a convex flux. Nonlin. Diff. Eqns. Appl. 6 (1999), 413–436.

    Article  MATH  Google Scholar 

  133. H. Hattori and K. Mischaikow. A dynamical system approach to a phase transition problem. J. Diff. Eqns. 94 (1991), 340–378.

    Article  MathSciNet  MATH  Google Scholar 

  134. S. Heinze. Travelling waves for semilinear parabolic partial differential equations in cylindrical domains. Dissertation, Heidelberg, 1989.

    Google Scholar 

  135. D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lect. Notes Math. 804, Springer-Verlag, New York, Berlin, Heidelberg, 1981.

    Google Scholar 

  136. D. Henry. Some infinite dimensional Morse-Smale systems defined by parabolic differential equations. J. Diff. Eqns. 59 (1985), 165–205.

    Article  MathSciNet  MATH  Google Scholar 

  137. C. Henze and A. T. Winfree. A stable knotted singularity in an excitable medium. Int. J. Bif. Chaos 1 (1991), 891–922.

    Article  MATH  Google Scholar 

  138. M. W. Hirsch. Differential equations and convergence almost everywhere in strongly monotone semiflows. J. Smoller, (ed.). In Nonlinear Partial Differential Equations. p. 267–285, AMS Publications, Providence, 1983.

    Google Scholar 

  139. M. W. Hirsch. Systems of differential equations that are competitive or cooperative II. Convergence almost everywhere. SIAM J. Math. Analysis 16 (1985), 423–439.

    Google Scholar 

  140. M. W. Hirsch. Stability and convergence in strongly monotone dynamical systems. Crelle J. reine angew. Math. 383 (1988), 1–58.

    MATH  Google Scholar 

  141. M. W. Hirsch, C.C. Pugh, and M. Shub. Invariant Manifolds. Springer-Verlag, Berlin, 1977.

    MATH  Google Scholar 

  142. G. Moss and A. Mielke. Bifurcating time—periodic solutions of Navier-Stokes equations in infinite cylinders. J. Nonlinear Science 1 (1991), 107–146.

    Google Scholar 

  143. W. Jäger and S. Luckhaus. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc., 329 (1992), 819–824.

    MATH  Google Scholar 

  144. W. Jahnke, C. Henze, and A.T. Winfree. Chemical vortex dynamics in the 3-dimensional excitable media. Nature 336 (1988), 662–665.

    Google Scholar 

  145. W. Jahnke, W.E. Skaggs, and A.T. Winfree. Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable Oregonator model. J. Chem. Phys. 93 (1989), 740–749.

    Article  Google Scholar 

  146. T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin, Heidelberg, New York, 1966.

    Google Scholar 

  147. A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  148. A. Katok and B. Hasselblatt (eds.) Handbook of Dynamical Systems 1, Elsevier, Amsterdam. to appear 2002.

    MATH  Google Scholar 

  149. J.P. Keener. The core of the spiral. SIAM J. Appl. Math. 52 (1992), 1370–1390.

    Article  MathSciNet  MATH  Google Scholar 

  150. J.P. Keener and J.J. Tyson. The dynamics of scroll waves in excitable media. SIAM Rev., 34 (1992), 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  151. K. Kirchgässner. Wave-solutions of reversible systems and applications. J. Differential Equations 45 (1982), 113–127.

    Article  MathSciNet  MATH  Google Scholar 

  152. S.V. Kiyashko. The generation of stable waves in faraday experiment. 2000 Int. Symp. Nonlinear Theory and its Applications, 2000.

    Google Scholar 

  153. N. Kopell and L.N. Howard. Plane wave solutions to reaction-diffusion equations. Studies in Appl. Math. 52 (1973), 291–328.

    MathSciNet  MATH  Google Scholar 

  154. N. Kopell and L.N. Howard. Target patterns and spiral solutions to reaction-diffusion equations with more than one space dimension. Adv. Appl. Math. 2 (1981), 417–449.

    MathSciNet  MATH  Google Scholar 

  155. V.V. Kozlov. General Theory of Vortices. Enc. Math. Sc. 67, Dynamical Systems X. Springer-Verlag, New York, 2002.

    Google Scholar 

  156. M. Krupa. Bifurcations of relative equilibria. SIAM J. Math. Analysis 21 (1990), 1453–1486.

    Article  MathSciNet  MATH  Google Scholar 

  157. M. Kubicek and M. Marek. Computational Methods in Bifurcation Theory and Dissipative Structures. Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  158. Y.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer-Verlag, Berlin, 1995.

    Book  MATH  Google Scholar 

  159. O.A. Ladyzhenskaya. Attractors for Semigroups and Evolution Equations. Cambridge University Press, 1991.

    Google Scholar 

  160. L.D. Landau and E.M. Lifschitz. Fluid Mechanics. Pergamon Press, London, 1959.

    Google Scholar 

  161. X.-B. Lin. Using Melnikov’s method to solve Shilnikov’s problems. Proc. Roy. Soc. Edinburgh, 116A (1990), 295–325.

    Article  MATH  Google Scholar 

  162. G. Li, Q. Ouyang, V. Petrov, and H. L. Swinney. Transition from simple rotating chemical spirals to meandering and traveling spirals. Phys. Rev. Lett. 77 (1996), 2105–2108.

    Article  Google Scholar 

  163. A.E.H. Love. A Treatise on the Mathematical Theory of Elasticity. Dover Publications, New-York, 1904.

    Google Scholar 

  164. J. Mallet-Paret. Morse decompositions for delay-differential equations. J. Diff. Eqns. 72 (1988), 270–315.

    Article  MathSciNet  MATH  Google Scholar 

  165. J. Mallet-Paret and H. Smith. The Poincaré-Bendixson theorem for monotone cyclic feedback systems. J. Diff. Eqns. 4 (1990), 367–421.

    MathSciNet  Google Scholar 

  166. J. Mallet-Paret and G.R. Sell. The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay. J. Diff. Eqns. 125 (1996), 441–489.

    Article  MathSciNet  MATH  Google Scholar 

  167. J. Mallet-Paret and G.R. Sell. Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions. J. Diff. Eqns. 125 (1996), 385–440.

    Article  MathSciNet  MATH  Google Scholar 

  168. A.F.M. Maree and A.V. Panfilov. Spiral breakup in excitable tissue due to lateral instability. Phys. Rev. Lett. 78 (1997), 1819–1822.

    Article  Google Scholar 

  169. H. Matano. Convergence of solutions of one-dimensional semilinear parabolic equations. J. Math. Kyoto Univ., 18 (1978), 221–227.

    MathSciNet  MATH  Google Scholar 

  170. H. Matano. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sc. Kyoto Univ. 15 (1979), 401–454.

    Article  MathSciNet  MATH  Google Scholar 

  171. H. Matano. Nonincrease of the lap-number of a solution for a one-dimensional semi-linear parabolic equation. J. Fac. Sci. Univ. Tokyo Sec. IA, 29 (1982), 401–441.

    MathSciNet  MATH  Google Scholar 

  172. H. Matano. Strongly order-preserving local semi-dynamical systems the- ory and applications. In Semigroups, Theory and Applications. H. Brezis, M.G. Crandall, F. Kappel (eds.), 178–189. John Wiley Sons, New York, 1986.

    Google Scholar 

  173. H. Matano. Strong comparison principle in nonlinear parabolic equations. In Nonlinear Parabolic Equations: Qualitative Properties of Solutions, L. Bo-cardo, A. Tesei (eds.), 148–155. Pitman Res. Notes Math. Ser. 149 (1987).

    Google Scholar 

  174. H. Matano. Asymptotic behavior of solutions of semilinear heat equations on S’. In Nonlinear Diffusion Equations and their Equilibrium States II. W.-M. Ni, L.A. Peletier, J. Serrin (eds.). 139–162. Springer-Verlag, New York, 1988.

    Google Scholar 

  175. H. Matano and K.-I. Nakamura. The global attractor of semilinear parabolic equations on S l . Discr. Contin. Dyn. Syst. 3 (1997), 1–24.

    MathSciNet  MATH  Google Scholar 

  176. J. Mawhin and M. Willem. Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

  177. A. Mielke. Hamiltonian and Lagrangian Flows on Center Manifolds. Springer-Verlag, Berlin, 1991.

    MATH  Google Scholar 

  178. A. Mielke. Essential manifolds for elliptic problems in infinite cylinders. J. Diff. Eqns., 110 (1994), 322–355.

    Article  MathSciNet  MATH  Google Scholar 

  179. A. Mielke. Instability and stability of rolls in the Swift-Hohenberg equation. Comm. Math. Phys. 189 (1997), 829–853.

    Article  MathSciNet  MATH  Google Scholar 

  180. A. Mielke and G. Schneider. Derivation and justification of the complex Ginzburg-Landau equation as a modulation equation. Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA, 1994 ), 191–216, Lectures in Appl. Math. 31, Amer. Math. Soc., Providence, RI, 1996.

    Google Scholar 

  181. A.S. Mikhailov and V.S. Zykov. Kinematical theory of spiral waves in excitable media: comparison with numerical simulations. Physica D 52 (1991), 379–397.

    Article  Google Scholar 

  182. J. Moser. Stable and Random Motions in Dynamical Systems. Princeton University Press, New York, 1973.

    MATH  Google Scholar 

  183. S.C. Müller and V.S. Zykov. Simple and complex spiral wave dynamics. Phil. Trans. Roy. Soc. Lond. A 347 (1994), 677–685.

    Article  MATH  Google Scholar 

  184. N.S. Nadirashvili. On the dynamics of nonlinear parabolic equations. Soviet Math. Dokl. 40 (1990), 636–639.

    MathSciNet  MATH  Google Scholar 

  185. S. Nettesheim, A. von Oertzen, H.H. Rotermund, and G. Ertl. Reaction diffusion patterns in the catalytic CO-oxidation on Pt(110) front propagation and spiral waves. J. Chem. Phys. 98 (1993), 9977–9985.

    Article  Google Scholar 

  186. T. Ogiwara and K.-I. Nakamura. Spiral traveling wave solutions of some parabolic equations on annuli. In Nonlinear Analysis, Josai Math. Monogr., Nishizawa, Kiyoko (ed.) 2 (2000), 15–34.

    Google Scholar 

  187. W.M. Oliva. Morse-Smale semiflows. Openess and A-stability. Comm. Fields Inst. (2002), in press.

    Google Scholar 

  188. R. S. Palais. On the existence of slices for actions of non-compact Lie groups. Ann. of Math. 73 (1961), 295–323.

    Article  MathSciNet  MATH  Google Scholar 

  189. J. Palis. On Morse-Smale dynamical systems. Topology 8 (1969), 385–404.

    Article  MathSciNet  MATH  Google Scholar 

  190. J. Palis and S. Smale. Structural stability theorems. In Global Analysis. Proc. Symp. in Pure Math. vol. XIV. AMS, Providence, 1970. S. Chern, S. Smale (eds.).

    Google Scholar 

  191. K.J. Palmer. Exponential dichotomies and Fredholm operators. Proc. Amer. Math. Soc. 104 (1988), 149–156.

    Article  MathSciNet  MATH  Google Scholar 

  192. A.V. Panfilov and A. T. Winfree. Dynamical simulations of twisted scroll rings in 3-dimensional excitable media. Physica D 17 (1985), 323–330.

    Article  MathSciNet  Google Scholar 

  193. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  194. V. Perez-Munuzuri, R. Aliev, B. Vasiev, V. Perez-Villar, and V. I. Krinsky. Super-spiral structure in an excitable medium. Nature 353 (1991) 740–742.

    Article  Google Scholar 

  195. V. Perez-Munuzuri, M. Gomez-Gesteira, and V. Perez-Villar. A geometrical-kinematical approach to spiral wave formation: Super-spiral waves. Physica D 64 (1993), 420–430.

    Article  MATH  Google Scholar 

  196. D. Peterhof, A. Scheel, and B. Sandstede. Exponential dichotomies for solitary wave solutions of semilinear elliptic equations on infinite cylinders. J. Diff. Eqns. 140 (1997), 266–308.

    Article  MathSciNet  MATH  Google Scholar 

  197. B.B. Plapp and E. Bodenschatz. Core dynamics of multiarmed spirals in Rayleigh-Bénard convection. Physica Scripta 67 (1996), 111–117.

    Article  Google Scholar 

  198. P. Polâcik. Convergence in strongly monotone flows defined by semilinear parabolic equations. J. Diff. Eqs. 79 (1989), 89–110.

    Article  MATH  Google Scholar 

  199. P. Polâcik. High-dimensional w-limit sets and chaos in scalar parabolic equations. J. Diff. Eqns., 119 (1995), 24–53.

    Article  MATH  Google Scholar 

  200. P. Polâcik. Parabolic equations: Asymptotic behavior and dynamics on invariant manifolds. In Handbook of Dynamical Systems, Vol. 2. B. Fiedler (ed.), Elsevier, Amsterdam, 2002. In press.

    Google Scholar 

  201. G. Polya. Qualitatives über Wärmeaustausch. Z. Angew. Math. Mech. 13 (1933), 125–128,.

    Google Scholar 

  202. G. Pospiech. Eigenschaften, Existenz und Stabilität von travelling wave Lösungen zu einem System von Reaktions-Diffusions-Gleichungen. Dissertation, Universität Heidelberg, 1992.

    Google Scholar 

  203. M. Prizzi and K.P. Rybakowski. Complicated dynamics of parabolic equations with simple gradient dependence. Trans. Am. Math. Soc. 350 (1998), 3119–3130.

    Article  MathSciNet  MATH  Google Scholar 

  204. M. Prizzi and K.P. Rybakowski. Inverse problems and chaotic dynamics of parabolic equations on arbitrary spatial domains. J. Diff. Eqns. 142 (1998), 17–53.

    Article  MathSciNet  MATH  Google Scholar 

  205. M.H. Protter and H.F. Weinberger. Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs, New Jersey, 1967.

    Google Scholar 

  206. G. Raugel. Global attractors. In Handbook of Dynamical Systems, Vol. 2. B. Fiedler (ed.), Elsevier, Amsterdam, 2002. In press.

    Google Scholar 

  207. M. Reed and B. Simon. Methods of Modern Mathematical Physics IV. Academic Press, 1978.

    Google Scholar 

  208. J. Robbin and D. Salamon. The spectral flow and the Maslov index. Bull. London Math. Soc. 27 (1995), 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  209. C. Rocha. Generic properties of equilibria of reaction-diffusion equations with variable diffusion.Proc. R. Soc. Edinb. A 101 (1985), 45–55.

    Article  MathSciNet  MATH  Google Scholar 

  210. C. Rocha. Properties of the attractor of a scalar parabolic PDE. J. Dyn. Differ. Equations 3 (1991), 575–591.

    Article  MathSciNet  MATH  Google Scholar 

  211. B. Sandstede. Verzweigungstheorie homokliner Verdopplungen. Dissertation, Universität Stuttgart, 1993.

    MATH  Google Scholar 

  212. B. Sandstede. Asymptotic behavior of solutions of non-autonomous scalar reaction-diffusion equations. In Conf. Proceeding International Conference on Differential Equations, Barcelona 1991, C. Perello, C. Simo, and J. Sola-Morales (eds.), 888–892, World Scientific, Singapore, 1993.

    Google Scholar 

  213. B. Sandstede and B. Fiedler. Dynamics of periodically forced parabolic equations on the circle. Ergod. Theor. Dynam. Sys. 12 (1992), 559–571.

    MathSciNet  MATH  Google Scholar 

  214. B. Sandstede and A. Scheel. Essential instability of pulses and bifurcations to modulated travelling waves. Proc. Roy. Soc. Edinburgh. A 129 (1999), 1263–1290.

    Article  MathSciNet  MATH  Google Scholar 

  215. B. Sandstede and A. Scheel.Gluing unstable fronts and backs together can produce stable pulses. Nonlinearity 13 (2000), 1465–1482.

    Article  MathSciNet  MATH  Google Scholar 

  216. B. Sandstede and A. Scheel. Spectral stability of modulated travelling waves bifurcating near essential instabilities. Proc. R. Soc. Edinburgh A 130 (2000), 419–448.

    Article  MathSciNet  MATH  Google Scholar 

  217. B. Sandstede and A. Scheel. Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D 145 (2000), 233–277.

    Article  MathSciNet  MATH  Google Scholar 

  218. B. Sandstede and A. Scheel. Absolute versus convective instability of spiral waves. Phys. Rev. E. 62 (2000), 7708–7714.

    Article  MathSciNet  Google Scholar 

  219. B. Sandstede and A. Scheel. Super-spiral structures of meandering and drifting spiral waves. Phys. Rev. Lett. 86 (2001), 171–174.

    Article  Google Scholar 

  220. B. Sandstede and A. Scheel. Essential instabilities of fronts: bifurcation and bifurcation failure. Dynamical Systems: An International Journal 16 (2001), 1–28.

    MathSciNet  MATH  Google Scholar 

  221. B. Sandstede and A. Scheel. On the stability of periodic travelling waves with large spatial period. J. Diff. Eqns. 172 (2001), 134–188.

    Article  MathSciNet  MATH  Google Scholar 

  222. B. Sandstede and A. Scheel. On the structure of spectra of modulated travelling waves. Math. Nachr. 232 (2001), 39–93.

    Article  MathSciNet  MATH  Google Scholar 

  223. B. Sandstede and A. Scheel. Nonlinear convective stability and instability the role of absolute spectra and nonlinearities.In preparation (2002).

    Google Scholar 

  224. B. Sandstede and A. Scheel. Instabilities of spiral waves in large disks.In preparation (2002).

    Google Scholar 

  225. B. Sandstede, A. Scheel, and C. Wulff. Center manifold reduction for spiral wave dynamics. C. R. Acad. Sci. Paris, Série 1324 (1997), 153–158.

    Google Scholar 

  226. B. Sandstede, A. Scheel, and C. Wulff. Dynamics of spiral waves on unbounded domains using center-manifold reduction. J. Diff. Eqns. 141 (1997), 122–149.

    Article  MathSciNet  MATH  Google Scholar 

  227. B. Sandstede, A. Scheel, and C. Wulff. Bifurcations and dynamics of spiral waves. J. Nonlinear Science 9 (1999), 439–478.

    Article  MathSciNet  MATH  Google Scholar 

  228. R. Schaaf. Global Solution Branches of Two Point Boundary Value Problems. Springer-Verlag, New York, 1990.

    MATH  Google Scholar 

  229. A. Scheel. Existence of fast travelling waves for some parabolic equations —a dynamical systems approach. J. Dyn. Diff. Eqns. 8 (1996), 469–548.

    Article  MathSciNet  MATH  Google Scholar 

  230. A. Scheel. Subcritical bifurcation to infinitely many rotating waves. J. Math. Anal. Appl. 215 (1997), 252–261.

    Article  MathSciNet  MATH  Google Scholar 

  231. A. Scheel. Bifurcation to spiral waves in reaction-diffusion systems. SIAM J. Math. Anal. 29 (1998), 1399–1418.

    Article  MathSciNet  MATH  Google Scholar 

  232. A. Scheel.Radially symmetric patterns of reaction-diffusion systems. Preprint 2001.

    Google Scholar 

  233. G. Schneider. Hopf bifurcation in spatially extended reaction-diffusion systems. J. Nonlinear Sci. 8 (1998), 17–41.

    Article  MathSciNet  MATH  Google Scholar 

  234. G. Schneider. Nonlinear diffusive stability of spatially periodic solutions — abstract theorem and higher space dimensions. Tohoku Math. Publ. 8 (1998), 159–167.

    Google Scholar 

  235. Ya.G. Sinai. Ergodic theory with applications to dynamical systems and statistical mechanics. Enc. Math. Sc. 2, Dynamical Systems II. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  236. G. S. Skinner and H. L. Swinney. Periodic to quasiperiodic transition of chemical spiral rotation. Physica D 48 (1991), 1–16.

    Article  MATH  Google Scholar 

  237. H. Smith. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. AMS, Providence, 1995.

    MATH  Google Scholar 

  238. J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  239. A. Steven. The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math., 61 (2000), 183–212.

    Article  MathSciNet  Google Scholar 

  240. M. Struwe. Variational Methods. Springer-Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  241. St36] C. Sturm. Sur une classe d’équations à différences partielles. J. Math. Pure Appl. 1(1836), 373–444,.

    Google Scholar 

  242. F. Takens. Singularities of vector fields. Publ. IHES, 43 (1974), 47–100.

    MathSciNet  Google Scholar 

  243. H. Tanabe. Equations of Evolution. Pitman, Boston, 1979.

    MATH  Google Scholar 

  244. R. Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, 1988.

    Book  MATH  Google Scholar 

  245. S.M. Tobias and E. Knobloch. Breakup of spiral waves into chemical turbulence. Phys. Rev. Lett. 80 (1998), 4811–4814.

    Article  Google Scholar 

  246. A. Turing. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. B 237 (1952), 37–72.

    Article  Google Scholar 

  247. J.J. Tyson and S.H. Strogatz. The differential geometry of scroll waves. Int. J. Bif. Chaos, 1 (1991), 723–744.

    Article  MathSciNet  MATH  Google Scholar 

  248. K. Uhlenbeck. Generic properties of eigenfunctions. Amer. J. Math., 98 (1976), 1059–1078.

    Article  MathSciNet  MATH  Google Scholar 

  249. Zs. Ungvarai-Nagy, J. Ungvarai, and S.C. Müller. Complexity in spiral wave dynamics. Chaos 3 (1993), 15–19.

    Article  Google Scholar 

  250. A. Vanderbauwhede. Local Bifurcation and Symmetry. Pitman, Boston, 1982.

    MATH  Google Scholar 

  251. A. Vanderbauwhede. Center manifolds, normal forms and elementary bifurcations. Dynamics Reported 2 (1989), 89–169.

    Article  MathSciNet  Google Scholar 

  252. W. Walter. Differential and Integral Inequalities. Springer-Verlag, New York, 1970.

    Book  MATH  Google Scholar 

  253. N. Wiener and A. Rosenblueth. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mexico 16 (1946), 205–265.

    Google Scholar 

  254. A. T. Winfree. Spiral waves of chemical activity. Science, 175 (1972), 634–636.

    Article  Google Scholar 

  255. A. T. Winfree. Scroll-shaped waves of chemical activity in three dimensions. Science 181 (1973), 937–939.

    Google Scholar 

  256. A. T. Winfree. When Time Breaks Down. Princeton University Press, Princeton, NJ, 1987.

    Google Scholar 

  257. A. T. Winfree. Varieties of spiral wave behavior: An experimentalist’s approach to the theory of excitable media. Chaos 1 (1991), 303–334.

    Google Scholar 

  258. A. T. Winfree. Persistent tangles of vortex rings in excitable media. Physica D 84 (1995), 126–147.

    Google Scholar 

  259. A. T. Winfree. The geometry of biological time. Biomathematics 8, Springer-Verlag, Berlin-New York, 2001.

    Google Scholar 

  260. A. T. Winfree, E.M. Winfree, and M. Seifert. Organizing centers in a cellular excitable medium. Physica D, 17 (1995), 109–115.

    Article  MathSciNet  Google Scholar 

  261. Matthias Wolfrum. Geometry of Heteroclinic Cascades in Scalar Semilinear Parabolic Equations. Dissertation, Freie Universität Berlin, 1998.

    Google Scholar 

  262. M. Wolfrum. Personal communication, (2002).

    Google Scholar 

  263. M. Wolfrum. A sequence of order relations, encoding heteroclinic connections in scalar parabolic PDEs. J. Diff. Eqns., to appear (2002).

    Google Scholar 

  264. C. Wulff. Theory of Meandering and Drifting Spiral Waves in Reaction-Diffusion Systems. Dissertation, Berlin, 1996.

    Google Scholar 

  265. C. Wulff, J. Lamb, and I. Melbourne. Bifurcation from relative periodic solutions. Ergodic Theory Dynam. Systems 21 (2001), 605–635.

    Google Scholar 

  266. H. Yagisita, M. Mimura, and M. Yamada. Spiral wave behaviors in an excitable reaction-diffusion system on a sphere. Physica D 124 (1998), 126–136.

    Google Scholar 

  267. E. Zeidler. Nonlinear functional analysis and its applications. III: Variational methods and optimization. Springer-Verlag, New York, 1985.

    MATH  Google Scholar 

  268. E. Zeidler. Nonlinear functional analysis and its applications. Volume I: Fixed-point theorems. Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  269. T.I. Zelenyak. Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Diff. Eqns. 4 (1968), 17–22.

    Google Scholar 

  270. L. Q. Zhou and Q. Ouyang. Experimental studies on long-wavelength instability and spiral breakup in a reaction-diffusion system. Phys. Rev. Lett. 85 (2000), 1650–1653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiedler, B., Scheel, A. (2003). Spatio-Temporal Dynamics of Reaction-Diffusion Patterns. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds) Trends in Nonlinear Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05281-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05281-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07916-0

  • Online ISBN: 978-3-662-05281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics