Skip to main content

Multiscale Modeling of Materials — the Role of Analysis

  • Conference paper
Trends in Nonlinear Analysis

Abstract

We present two case studies how analysis can be used to derive a hierarchy of models to capture multiscale behavior of materials. The determination, via Γ-convergence, of the thin film limit of micromagnetism delivers a reduced two-dimensional model for soft ferromagnetic films which justifies previously known theories for small fields and extends them to the regime of field penetration. The analytic evaluation of the quasiconvex envelope of the microscopic energy density of nematic elastomers allows efficient numerical computations with finite elements and shows the existence of a new “smectic” phase. In both cases, the numerical solution of the coarse-grained model is complemented by a reconstruction of the microscopic pattern associated with the reduced field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Alberti and S. Müller, A new approach to variational problems with multiple scales, Comm. Pure Appl. Math. 54 (2001), 761–825.

    MathSciNet  MATH  Google Scholar 

  2. L. Ambrosio, C. De Lellis, and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Diff. Eqs. 9 (1999), 327–355.

    Article  MATH  Google Scholar 

  3. G. Anzellotti, S. Baldo, and A. Visintin, Asymptotic behavior of the LandauLifshitz model of ferromagnetism, Appl. Math. Optim. 23 (1991), 171–192.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Ball and R. D. James, Fine phase mixtures as minimizers of the energy, Arch. Rat. Mech. Anal. 100 (1987), 13–52.

    Article  MATH  Google Scholar 

  5. 5. H. Ben Belgacem, S. Conti, A. DeSimone, and S. Müller, Energy scaling of

    Google Scholar 

  6. compressed elastic films,Arch. Rat. Mech. Anal. 164 (2002), 1–37.

    Google Scholar 

  7. Rigorous bounds for the Föppl-von Kc rmó,n theory of isotropically com-

    Google Scholar 

  8. pressed plates, J. Nonlinear Sci. 10 (2000), 661–683.

    Google Scholar 

  9. H. A. M. van den Berg, Self-consistent domain theory in soft ferromagnetic media. ii. basic domain structures in thin film objects, J. Appl. Phys. 60 (1986), 1104–1113.

    Article  Google Scholar 

  10. G. Bertotti, Hysteresis in magnetism, Academic Press, San Diego, 1998.

    Google Scholar 

  11. P. Bladon, E. M. Terentjev, and M. Warner, Transitions and instabilities in liquid-crystal elastomers, Phys. Rev. E 47 (1993), R3838 - R3840.

    Google Scholar 

  12. A. Braides and A. Defranceschi, Homogeneization of multiple integrals, Clare-don Press, Oxford, 1998.

    Google Scholar 

  13. W. F. Brown, Micromagnetics, Wiley, 1963.

    Google Scholar 

  14. P. Bryant and H. Suhl, Thin-film magnetic patterns in an external field, Appl. Phys. Lett. 54 (1989), 2224.

    Google Scholar 

  15. M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Rat. Mech. Anal. 103 (1988), 237–277.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Conti, G. Dolzmann, and A. DeSimone, Soft elastic response of stretched sheets of nematic elastomers: a numerical study, J. Mech. Phys. Solids 50 (2002), 1431–1451.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Dacorogna, A relaxation theorem and its application to the equilibrium of gases, Arch. Rat. Mech. Anal. 77 (1981), 359–386.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Dacorogna, Direct methods in the calculus of variations, Springer, Berlin, 1989.

    Book  MATH  Google Scholar 

  19. B. Dacorogna and C. Tanteri, Implicit partial differential equations and the constraints of non linear elasticity, J. Math. Pure Appl. 81 (2002), 311–341.

    MathSciNet  MATH  Google Scholar 

  20. G. Dal Maso, An introduction to F-convergence, Birkhäuser, Boston, 1993.

    Google Scholar 

  21. E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell’area, Rend. Mat. 8 (1975), 277–294.

    Google Scholar 

  22. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. 58 (1975), 842–850.

    MATH  Google Scholar 

  23. A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies, Arch. Rat. Mech. Anal. 161 (2002), 181–204.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. DeSimone and R.D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids 50 (2002), 283–320.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. DeSimone, R.V. Kohn, S. Müller, and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edin. A 131 (2001), 833–844.

    Article  MATH  Google Scholar 

  26. A. DeSimone, R.V. Kohn, S. Müller, and F. Otto, Magnetic microstructures - a paradigm of multiscale problems,ICIAM

    Google Scholar 

  27. J.M. Ball and J.C.R. Hunt, eds. ), Oxford Univ. Press, 2000, pp. 175–190.

    Google Scholar 

  28. A reduced theory for thin-film micromagnetics,Comm. Pure Appl. Math. (to appear).

    Google Scholar 

  29. Repulsive interaction of Néel wall tails,Mult. Model. and Simul. (in press).

    Google Scholar 

  30. A. DeSimone, R.V. Kohn, S. Müller, F. Otto, and R. Schäfer, Two-dimensional modeling of soft ferromagnetic films,Proc. Roy. Soc. Lond. A 457 (2001), 29832992.

    Google Scholar 

  31. L.C. Evans, Partial differential equations, American Mathematical Society, Providence, 1998.

    MATH  Google Scholar 

  32. H. Finkelmann, I. Kundler, E.M. Terentjev, and M. Warner, Critical stripe-domain instability of nematic elastomers,J. Phys. II France 7 (1997), 10591069.

    Google Scholar 

  33. G. Friesecke, R. James, and S. Müller, Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris Série I 334 (2002), 173–178.

    Article  MathSciNet  Google Scholar 

  34. G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a 2D mass-spring lattice, preprint (2001).

    Google Scholar 

  35. C.J. Garcia-Cervera and W.E, Effective dynamics for ferromagnetic thin films, J. Appl. Phys. 90 (2001), 370–374.

    Article  Google Scholar 

  36. P. Gérard, Microlocal defect measures, Comm. PDE 16 (1991), 1761–1794.

    Article  Google Scholar 

  37. G. Gioia and M. Ortiz, Delamination of compressed thin films, Adv. Appl. Mech. 33 (1997), 119–192.

    Article  Google Scholar 

  38. L. Golubovié and T. C. Lubensky, Nonlinear elasticity of amorphous solids, Phys. Rev. Lett. 63 (1989), 1082–1085.

    Article  Google Scholar 

  39. A. Hubert and R. Schäfer, Magnetic domains, Springer, Berlin, 1998.

    Google Scholar 

  40. P. E. Jabin, F. Otto, and B. Perthame, Line-energy Ginzburg-Landau models: zero-energy states,Ann. Sc. Normale Pisa (in press).

    Google Scholar 

  41. P.E. Jabin and B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging, Comm. Pure Appl. Math. 54 (2001), 1096–1109.

    MathSciNet  MATH  Google Scholar 

  42. V.V. Jikov, S.M. Kozlov, and O.A. Oleinik, Homogeneization of differential operators and integral functionals, Springer, Berlin, 1994.

    Book  Google Scholar 

  43. W. Jin and R.V. Kohn, Singular perturbation and the energy of folds, J. Nonlinear Sci. 10 (2000), 355–390.

    Article  MathSciNet  MATH  Google Scholar 

  44. W. Jin and P. Sternberg, Energy estimates of the von Kârmân model of thin-film blistering, J. Math. Phys. 42 (2001), 192–199.

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Kundler and H. Finkelmann, Strain-induced director reorientation in nematic liquid single crystal elastomers, Macromol. Chem. Rapid Comm. 16 (1995), 679–686.

    Article  Google Scholar 

  46. L.D. Landau and E.M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys Z. Sowjetunion 8 (1935), 153–169.

    MATH  Google Scholar 

  47. C. Le Bris and X. Blanc amd P.-L. Lions, Convergence de modèles moléculaires vers des modèles de mécanique des milieux continus, C. R. Acad. Sci. Paris Série I 332 (2001), 949–956.

    Article  MATH  Google Scholar 

  48. C. Melcher, The logarithmic tail of Néel walls in thin films, Preprint MPI-MIS 61 (2001).

    Google Scholar 

  49. C.B. Morrey, Multiple integrals in the calculus of variations, Springer, Berlin, 1966.

    MATH  Google Scholar 

  50. S. Müller, Variational models for microstructure and phase transitions, in Calculus of Variations and Geometric Evolution Problems, Le ctures given at the 2nd Session of the Centro Internazionale Matematico Estivo, Cetaro 1996 ( F. Bethuel, G. Huisken, S. Müller, K. Steffen, S. Hildebrandt, and M. Struwe, eds.), Springer, Berlin, 1999.

    Google Scholar 

  51. S. Müller and V. Sverâk, Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS) 1 (1999), 393–442.

    Article  MathSciNet  MATH  Google Scholar 

  52. F. Murat and L. Tartar, Calcul des variations et homogénéisation,Les Méthodes de l’Homogénéisation: Théorie et Applications en Physique (D. Bergman et al., ed.), Collect. Dir. Etudes Rech. Electricité de France, vol. 57, Eyrolles, Paris, 1985, pp. 319–369, (translated in [501).

    Google Scholar 

  53. F. Murat and L. Tartar, Calculus of variations and homogenization,Topics in the Mathematical Modelling of Composite Materials (A. Cherkaev and R. Kohn, eds.), Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, 1997, pp. 139–173, (see also the other contributions in this volume).

    Google Scholar 

  54. O. Pantz, Une justification partielle du modèle de plaque en flexion par F-convergence, C. R. Acad. Sci. Paris Série I 332 (2001), 587–592.

    Article  Google Scholar 

  55. T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics, Comm Pure Appl. Math. 54 (2001), 294–338.

    MATH  Google Scholar 

  56. J. A. Sethian, Level set methods, Cambridge University Press, 1996.

    Google Scholar 

  57. M. Silhavÿ, Relaxation in a class of SO(n)-invariant energies related to nematic elastomers, preprint (2001).

    Google Scholar 

  58. L. Tartar, Compensated compactness and partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium (R. Knops, ed.), vol. IV, Pitman, 1979, pp. 136–212.

    Google Scholar 

  59. L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edin. A 115 (1990), 193–230.

    Article  Google Scholar 

  60. L. Tartar, Beyond Young measures, Meccanica 30 (1995), 505–526.

    Article  MathSciNet  Google Scholar 

  61. R. Tickle, R.D. James, T. Shield, M. Wuttig, and V.V. Kokorin, Ferromagnetic shape memory in the NiMnGa system,IEEE Trans. Magn. 35 (1999), 43014310.

    Google Scholar 

  62. G.C. Verwey, M. Warner, and E. M. Terentjev, Elastic instability and stripe domain in liquid crystalline elastomers, J. Phys. II France 6 (1996), 1273–1290.

    Article  Google Scholar 

  63. M. Warner, New elastic behaviour arising from the unusual constitutive relation of nematic solids, J. Mech. Phys. Sol. 47 (1999), 1355–1377.

    Article  MATH  Google Scholar 

  64. M. Warner and E.M. Terentjev, Nematic elastomers–a new state of matter?, Prog. Polym. Sci. 21 (1996), 853–891.

    Google Scholar 

  65. J. Weilepp and H.R. Brand, Director reorientation in nematic-liquid-singlecrystal elastomers by external mechanical stress, Europhys. Lett. 34 (1996), 495–500.

    Google Scholar 

  66. L.C. Young, Lectures on the calculus of variations and optimal control theory, Saunders, 1969, reprinted by Chelsea, 1980.

    Google Scholar 

  67. E.R. Zubarev, S.A. Kuptsov, T.I. Yuranova, R.V. Talroze, and H. Finkelmann, Monodomain liquid crystalline networks: reorientation mechanism from uniform to stripe domains, Liquid crystals 26 (1999), 1531–1540.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Conti, S., DeSimone, A., Dolzmann, G., Müller, S., Otto, F. (2003). Multiscale Modeling of Materials — the Role of Analysis. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds) Trends in Nonlinear Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05281-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05281-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07916-0

  • Online ISBN: 978-3-662-05281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics