Advertisement

Low-Power Vertical-Cavity Surface-Emitting Lasers and Microcavity Light-Emitting Diodes Based on Apertured-Microcavities

  • D. G. Deppe
Part of the Springer Series in Photonics book series (PHOTONICS, volume 6)

Abstract

Iga is generally credited with pioneering the vertical-cavity surface-emitting laser (VCSEL) [1]. From 1979 into the mid-1980s Iga’s group at the Tokyo Institute of Technology was one of the few laboratories developing the VCSEL. In the mid-1980s Gourley and his co-workers began studying VCSELs fabricated directly from III–V epitaxy, using Al x Ga1−x As/Al y Ga1−y As distributed Bragg reflectors (DBRs) [2]. Since Gourley’s work was based on photopumping, the practical aspects of all-epitaxial VCSELs was yet to be demonstrated. In 1989 Jewell and his co-workers demonstrated electrically injected, all-epitaxial VCSELs with low threshold current [3], and this result generated a great deal of interest in VCSEL devices. Since these demonstrations, the powerful approach that VCSELs provide for two-dimensional arrays of low power, high-speed light emitters has grown rapidly in appreciation.

Keywords

Optical Loss Mode Size Threshold Current Density Spontaneous Emission Rate Planar Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Iga, F. Koyama, S. Kinoshita: “Surface-emitting semiconductor lasers” IEEE J. Quantum Electron. 24, 1845–1855 (1988) and references thereinGoogle Scholar
  2. 2.
    P.L. Gourley, T.J. Drummond: “Visible, room-temperature, surface-emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells”, Appl. Phys. Lett. 50, 1225–1227 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    J.L. Jewell, J.P. Harbison, A. Scherer, A.H. Lee, L.T. Florez: “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization”, IEEE J. Quantum Electron. 27, 1332–1346 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Dallesasse, N. Holonyak Jr., A.R. Sugg, T.A. Richard: “Hydrolyzation oxidation of AlGaAs–AlAs–GaAs quantum well heterostructures and superlattices”, Appl. Phys. Lett. 57, 2844–2846 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    J.M. Dallesasse, N. Holonyak Jr.: “Native-oxide stripe-geometry AlGaAs–GaAs quantum well heterostructure lasers”, Appl. Phys. Lett. 58, 394–396 (1991)ADSGoogle Scholar
  6. 6.
    S.A. Caracci, M.R. Krames, N. Holonyak, Jr., C.M. Herzinger, A.C. Crook, T.A. DeTemple, P.A. Besse: “Native-oxide-defined low-loss AlGaAs–GaAs planar waveguide bends”, Appl. Phys. Lett. 63, 2265–2267 (1993)Google Scholar
  7. 7.
    T.A. Richard, N. Holonyak Jr., F.A. Kish, M.R. Keever, C. Lei: “Postfabrication native-oxide improvement of the reliability of visible spectrum AlGaAs– In(AlGa)P pn heterostructure diodes”, Appl. Phys. Lett. 66, 2972–2974 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    E.I. Chen, N. Holonyak Jr., S.A. Maranowski: “AlGaAs–GaAs metal-oxide semiconductor field-effect transistors formed by lateral water vapor oxidation of AlAs”, Appl. Phys. Lett. 66, 2688–2690 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers: “Native-oxide-defined buried-ring contact for low-threshold vertical-cavity lasers”, Appl. Phys. Lett. 65, 97–99 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    D.G. Deppe, T.-H. Oh, D.L. Huffaker: “Eigenmode confinement in the dielectrically apertured Fabry–Perot microcavity”, IEEE Photonics Tech. Lett. 9, 713–715 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    C.C. Hansing, H. Deng, D.L. Huffaker, D.G. Deppe, B.G. Streetman, J. Sarathy: “Low-threshold continuous-wave surface-emitting lasers with etched-void confinement”, IEEE Photonics Tech. Lett. 6, 320–322 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    K.L. Lear, R.P. Schneider Jr., K.D. Choquette, S.P. Kilcoyne: “Index-guiding effects in implant and oxide-confined vertical-cavity surface-emitting lasers’,, IEEE Photonics Tech. Lett. 8, 740–742 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    D.G. Deppe, D.L. Huffaker, C.C. Lin, T.J. Rogers: “Nearly planar low-threshold vertical-cavity surface-emitting lasers using high contrast mirrors and native oxide,” in: Conference on Lasers and Electro-Optics, Anaheim, CA, May 8–13, 1994, Technical Digest Series 8, CPD2–1/3–6/8 (1994)Google Scholar
  14. 14.
    R.F. Harrington: Time-Harmonic Electromagnetic Fields, pp. 186–189 ( McGraw–Hill, New York, 1961 )Google Scholar
  15. 15.
    G.R. Hadley: “Effective-index model for vertical-cavity surface-emitting lasers”, Opt. Lett. 20, 1483–1485 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    T.-H. Oh, D.L. Huffaker, D.G. Deppe: “Size effects in small oxide-confined vertical-cavity surface-emitting lasers”, Appl. Phys. Lett. 69, 3152–3154 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    K.D. Choquette, R.P. Schneider Jr., K.L. Lear, K.M. Geib: “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation”, Electron. Lett. 30, 2043–2044 (1994)CrossRefGoogle Scholar
  18. 18.
    K.L. Lear, K.D. Choquette, R.P. Scheider Jr., S.P. Kilcoyne, K.M. Geib: “Selective oxidized vertical-cavity surface-emitting laers with 50% power conversion effiency”, Electron. Lett. 31, 208–209 (1995)CrossRefGoogle Scholar
  19. 19.
    D.L. Huffaker, J. Shin, D.G. Deppe: “Low-threshold half-wave vertical-cavity lasers”, Electron. Lett. 30, 1946–1947 (1994)CrossRefGoogle Scholar
  20. 20.
    Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga: “Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native-oxide confinement structure”, Electron. Lett. 31, 560–562 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    G.M. Yang, M.H. MacDougal, P.D. Dapkus: “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation”, Electron. Lett. 31, 886–888 (1995)CrossRefGoogle Scholar
  22. 22.
    G.M. Yang, M.H. MacDougal, V. Pudikov, P.D. Dapkus: “Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers”, IEEE Photonics Tech. Lett. 7, 1228–1230 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    D.L. Huffaker, L.A. Graham, H. Deng, D.G. Deppe: “Sub-40 PA continuous-wave lasing in an oxidized vertical-cavity surface-emitting laser with dielectric mirrors”, IEEE Photonics Tech. Lett. 8, 974–976 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    D.L. Huffaker, D.G. Deppe: “Improved performance of oxide-confined vertical-cavity surface-emitting lasers using a tunnel-injection active region”, Appl. Phys. Lett. 71, 1449–1451 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Wiegl, K. Ebeling: “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs”, Electron. Lett. 33, 330–331 (1997)CrossRefGoogle Scholar
  26. 26.
    B. Weigl, M. Grabherr, G. Reiner, K.J. Ebeling: “High efficiency selectively oxidized MBE-grown vertical-cavity surface-emitting lasers”, Electron. Lett. 32, 557–558 (1996)CrossRefGoogle Scholar
  27. 27.
    B. Weigl, M. Grabherr, R. Michalzik, G. Reiner, K.J. Ebeling: “High-power single-mode selectively oxidized vertical-cavity surface-emitting lasers”, IEEE Photonics Tech. Lett. 8, 971–973 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    M. Grabherr, R. Hager, R. Michalzik, B. Weigl, G. Reiner, K.J. Ebeling: “Efficiency single-mode oxide-confined GaAs VCSELs emitting in the 850 nm wavelength regime”, IEEE Photonics Tech. Lett. 9, 1304–1306 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    K.L. Lear, A. Mar, K.D. Choquette, S.P. Kilcoyne, R.P. Schneider Jr., K.M. Geib: “High-frequency modulation of oxide-confined vertical-cavity surface-emitting laser”, Electron. Lett. 32, 457–458 (1996)CrossRefGoogle Scholar
  30. 30.
    B.J. Thibeault, K. Bertilsson, E.R. Hegblom, E. Strzelecka, P.D. Floyd, R. Naone, L.A. Coldren: “High-speed characteristics of low-optical loss oxideapertured vertical-cavity lasers”, IEEE Photonics Tech. Lett. 9, 11–13 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    G.R. Hadley: “Optical modeling of vertical-cavity surface-emitting lasers”, in: Proceedings of the 9th Annual Meeting of the IEEE Lasers and Electro-Optics Society 1, 142–143 (1996)Google Scholar
  32. 32.
    L.A. Coldren, B.J. Thibeault, E.R. Hegblom, G.B. Thompson, J.W. Scott: “Dielectric apertures as intracavity lenses in vertical-cavity lasers”, Appl. Phys. Lett. 68, 313–315 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    B.J. Thibeault, E.R. Hegblom, P.D. Floyd, R. Naone, Y. Akulova, L.A. Coldren: “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 ˚A) oxide aperture”, IEEE Photonics Tech. Lett. 8, 593–595 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    E.R. Hegblom, D.I. Babic, B.J. Thibeault, L.A. Coldren: “Scattering losses from dielectric apertures in vertical-cavity lasers”, IEEE J. Sel. Topics Quantum Electron. 3, 379–389 (1997)CrossRefGoogle Scholar
  35. 35.
    B. Demeulenaere, B. Dhoedt, R. Baets: “Design of AlAs-oxidized VCSELs with stable fundamental mode operation”, in: Proceedings of the 10th Annual Meeting of the IEEE Lasers and Electro-Optics Society 2, 352–353 (1997)Google Scholar
  36. 36.
    M.J. Noble, J.P. Loehr, J.A. Lott: “Calculation of VCSEL lasing mode threshold gain with the weighted index method”, in: Proceedings of the 10th Annual Meeting of the IEEE Lasers and Electro-Optics Society 2, 354–355 (1997)Google Scholar
  37. 37.
    D.G. Deppe, Q. Deng: “Self-consistent eigenmode analysis of the dielectrically apertured Fabry–Perot microcavity”, Appl. Phys. Lett. 71, 160–162 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    Q. Deng, D.G. Deppe: “Self-consistent calculation of the lasing eigenmode of the dielectrically apertured Fabry–Perot microcavity with idealized or distributed Bragg reflectors”, IEEE J. Quantum Electron. 33, 2319–2326 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    B. Klein, L.F. Register, K. Hess, D.G. Deppe: “Self-consistent Green’s function approach to the analysis of dielectrically apertured vertical-cavity surface-emitting lasers”, Appl. Phys. Lett. 73, 3324–3326 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    T.-H. Oh, D.L. Huffaker, D.G. Deppe: “Comparison of vertical-cavity surface-emitting lasers with half-wave cavity spacers confined by single-or double-oxide apertures”, IEEE Photonics Tech. Lett. 9, 875–877 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    W.W. Chow, K.D. Choquette, M.H. Crawford, K.L. Lear, G.R. Hadley: “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers”, IEEE J. Quantum Electron. 33, 1810–1824 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    N.M. Margalit, D.I. Babic, K. Streubel, R.P. Mirin, D.E. Mars, J.E. Bowers, E.L. Hu: “Laterally oxidized long wavelength CW vertical-cavity lasers”, Appl. Phys. Lett. 69, 471–472 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Qian, Z.H. Zhu, Y.H. Lo, D.L. Huffaker, D.G. Deppe, H.Q. Hou, B.E. Hammons, W. Lin, Y.K. Tu: “Long-wavelength (1.3 pm) vertical-cavity surface-emitting lasers with a wafer-bonded mirror and an oxygen-implanted confinement region” Appl. Phys. Lett. 71, 25–27 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    H. Shoji, K. Mukai, N. Ohtsuka, M. Sugawara, T. Uchida, H. Ischikawa: “Lasing at three-dimensionally quantum-confined sub-level of self-organized In0.5Ga0.5As quantum dots by current injection”, IEEE Photonics Tech. Lett. 7, 1385–1387 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    N.N. Ledentsov, V.A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Bimberg, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, P.S. Kop’ev, S.V. Zaitsev, N.Y. Gordeev, Z.I. Alferov, A.I. Borovkov, A.O. Kosogov, S.S. Ruvimov, P. Werner, U. Gosele, J. Heydenreich: “Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth”, Phys. Rev. B 54, 8743–8750 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Suagawara, N. Yokoyama, H. Ishikawa: “Room-temperature CW operation in the ground state of self-formed quantum dot lasers with multi-stacked dot layer”, Electron. Lett. 32, 20–23 (1996)CrossRefGoogle Scholar
  47. 47.
    Q. Xie, A. Kalburge, P. Chen, A. Madhukar: “Observation of lasing from vertically self-organized InAs three-dimensional island quantum boxes on GaAs (001)”, IEEE Photonics Tech. Lett. 8, 965–967 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    K. Kamath, P. Bhattacharya, T. Sosnowski, T. Norris, J. Phillips: “Room-temperature operation of In0.4Ga0.6As/GaAs self-organized quantum dot lasers”, Electron. Lett. 32, 1374–1375 (1996)CrossRefGoogle Scholar
  49. 49.
    R. Mirin, A. Gossard, J. Bowers: “Room-temperature lasing from InGaAs quantum dots”, Electron. Lett. 32, 1732–1734 (1996)CrossRefGoogle Scholar
  50. 50.
    D.L. Huffaker, G. Park, Z. Zou, O.B. Shchekin, D.G. Deppe: “1.3 Pm room-temperature GaAs-based quantum-dot laser”, Appl. Phys. Lett. 73, 2564–2466 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    H. Saito, K. Nishi, I. Ogura, S. Sugov, Y. Sugimoto: “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser”, Appl. Phys. Lett. 69, 3140–3142 (1996)ADSCrossRefGoogle Scholar
  52. 52.
    D.L. Huffaker, O. Baklenov, L.A. Graham, B.G. Streetman, D.G. Deppe: “Quantum dot vertical-cavity surface-emitting laser with a dielectric aperture”, Appl. Phys. Lett. 70, 2356–2358 (1997)ADSCrossRefGoogle Scholar
  53. 53.
    D.L. Huffaker, L.A. Graham, D.G. Deppe: “Low-threshold continuous-wave operation of an oxide-confined vertical-cavity surface-emitting laser based on a quantum dot active region and half-wave cavity”, Electron. Lett. 33, 1225–1226 (1997)CrossRefGoogle Scholar
  54. 54.
    J.A. Lott, N.N. Ledentsov, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, P.S. Kop’ev, Z.I. Alferov, D. Bimberg: “Vertical-cavity lasers based on vertically coupled quantum dots”, Electron. Lett. 33, 1150–1151 (1997)CrossRefGoogle Scholar
  55. 55.
    D.L. Huffaker, H. Deng, D.G. Deppe: “1.15 pm wavelength oxide-confined quantum dot vertical-cavity surface-emitting laser”, IEEE Photonics Tech. Lett. 10, 185–187 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    K.H. Drexhage: “Interaction of light with monomolecular dye layers”, in: E. Wolf (ed.), Progress in Optics, Vol. XII, Chap. IV. (North-Holland, Amsterdam, 1974 )Google Scholar
  57. 57.
    D.G. Deppe, J.C. Campbell, R. Kuchibhotla, T.J. Rogers, B.G. Streetman: “Optically-coupled mirror-quantum-well InGaAs–GaAs light-emitting diode” Electron. Lett. 26, 1665–1667 (1990)ADSCrossRefGoogle Scholar
  58. 58.
    E.F. Shubert, Y.-H. Wang, A.Y. Cho, L.-W. Tu, G.J. Zydzik: “Resonant-cavity light-emitting diodes”, Appl. Phys. Lett. 60, 9–21 (1991)Google Scholar
  59. 59.
    H. DeNeve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, G. Borghs: “High-efficiency planar microcavity LEDs”, IEEE Photonics Tech. Lett. 7, 2–87 (1995)Google Scholar
  60. 60.
    D.L. Huffaker, C.C. Lin, J. Shin, D.G. Deppe: “Resonant-cavity light-emitting diode with an AlxOy/GaAs reflector”, Appl. Phys. Lett. 66, 3096–3098 (1995)ADSCrossRefGoogle Scholar
  61. 61.
    J.J. Wierer, D.A. Kellogg, N. Holonyak Jr.: “Tunnel contact junction native-oxide aperture and mirror vertical-cavity surface-emitting lasers and resonant-cavity light-emitting diodes”, Appl. Phys. Lett. 74, 926–928 (1999)ADSGoogle Scholar
  62. 62.
    K. Ujihara: “Spontaneous emission and the concept of effective area in a very short cavity with plane-parallel dielectric mirrors”, Jpn. J. Appl. Phys. 30, L901–L903 (1991)ADSCrossRefGoogle Scholar
  63. 63.
    J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg: “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998)ADSCrossRefGoogle Scholar
  64. 64.
    T. Tezuka, S. Nunoue, H. Hoshida, T. Noda: “Spontaneous emission enhancement in pillar-type microcavities”, Jpn. J. Appl. Phys. 32, L54–L56 (1993)ADSCrossRefGoogle Scholar
  65. 65.
    L.A. Graham, D.L. Huffaker, Q. Deng, D.G. Deppe: “Controlled spontaneous lifetime in microcavity-confined InGaAlAs/GaAs quantum dots”, Appl. Phys. Lett. 72, 1670–1672 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    Q. Deng, D.G. Deppe: “Spontaneous lifetime change in a dielectricallyapertured Fabry–Perot microcavity”, Optics Express 2, 157–162 (1998)ADSCrossRefGoogle Scholar
  67. 67.
    B. Klein, K. Hess, D.G. Deppe: unpublishedGoogle Scholar
  68. 68.
    L.A. Graham, D.L. Huffaker, S.M. Csutak, Q. Deng, D.G. Deppe: “Spontaneous lifetime control of quantum dot emitters in apertured microcavities”, J. Appl. Phys. 85, 3383–3385 (1999)ADSCrossRefGoogle Scholar
  69. 69.
    L.A. Graham, D.L. Huffaker, D.G. Deppe: “Spontaneous lifetime control in a native-oxide-apertured-microcavity”, Appl. Phys. Lett. (1999), accepted for publicationGoogle Scholar
  70. 70.
    E.M. Purcell: “Spontaneous emission probabilities at radio frequencies” Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  71. 71.
    C.C. Lin, D.G. Deppe, C. Lei: “Role of waveguide light emission in planar microcavities”, IEEE J. Quantum Electron. 30, 2304–2313 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • D. G. Deppe

There are no affiliations available

Personalised recommendations