Skip to main content

Low-Power Vertical-Cavity Surface-Emitting Lasers and Microcavity Light-Emitting Diodes Based on Apertured-Microcavities

  • Chapter
  • 1098 Accesses

Part of the book series: Springer Series in Photonics ((PHOTONICS,volume 6))

Abstract

Iga is generally credited with pioneering the vertical-cavity surface-emitting laser (VCSEL) [1]. From 1979 into the mid-1980s Iga’s group at the Tokyo Institute of Technology was one of the few laboratories developing the VCSEL. In the mid-1980s Gourley and his co-workers began studying VCSELs fabricated directly from III–V epitaxy, using Al x Ga1−x As/Al y Ga1−y As distributed Bragg reflectors (DBRs) [2]. Since Gourley’s work was based on photopumping, the practical aspects of all-epitaxial VCSELs was yet to be demonstrated. In 1989 Jewell and his co-workers demonstrated electrically injected, all-epitaxial VCSELs with low threshold current [3], and this result generated a great deal of interest in VCSEL devices. Since these demonstrations, the powerful approach that VCSELs provide for two-dimensional arrays of low power, high-speed light emitters has grown rapidly in appreciation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Iga, F. Koyama, S. Kinoshita: “Surface-emitting semiconductor lasers” IEEE J. Quantum Electron. 24, 1845–1855 (1988) and references therein

    Google Scholar 

  2. P.L. Gourley, T.J. Drummond: “Visible, room-temperature, surface-emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells”, Appl. Phys. Lett. 50, 1225–1227 (1987)

    Article  ADS  Google Scholar 

  3. J.L. Jewell, J.P. Harbison, A. Scherer, A.H. Lee, L.T. Florez: “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization”, IEEE J. Quantum Electron. 27, 1332–1346 (1991)

    Article  ADS  Google Scholar 

  4. J.M. Dallesasse, N. Holonyak Jr., A.R. Sugg, T.A. Richard: “Hydrolyzation oxidation of AlGaAs–AlAs–GaAs quantum well heterostructures and superlattices”, Appl. Phys. Lett. 57, 2844–2846 (1990)

    Article  ADS  Google Scholar 

  5. J.M. Dallesasse, N. Holonyak Jr.: “Native-oxide stripe-geometry AlGaAs–GaAs quantum well heterostructure lasers”, Appl. Phys. Lett. 58, 394–396 (1991)

    ADS  Google Scholar 

  6. S.A. Caracci, M.R. Krames, N. Holonyak, Jr., C.M. Herzinger, A.C. Crook, T.A. DeTemple, P.A. Besse: “Native-oxide-defined low-loss AlGaAs–GaAs planar waveguide bends”, Appl. Phys. Lett. 63, 2265–2267 (1993)

    Google Scholar 

  7. T.A. Richard, N. Holonyak Jr., F.A. Kish, M.R. Keever, C. Lei: “Postfabrication native-oxide improvement of the reliability of visible spectrum AlGaAs– In(AlGa)P pn heterostructure diodes”, Appl. Phys. Lett. 66, 2972–2974 (1995)

    Article  ADS  Google Scholar 

  8. E.I. Chen, N. Holonyak Jr., S.A. Maranowski: “AlGaAs–GaAs metal-oxide semiconductor field-effect transistors formed by lateral water vapor oxidation of AlAs”, Appl. Phys. Lett. 66, 2688–2690 (1995)

    Article  ADS  Google Scholar 

  9. D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers: “Native-oxide-defined buried-ring contact for low-threshold vertical-cavity lasers”, Appl. Phys. Lett. 65, 97–99 (1994)

    Article  ADS  Google Scholar 

  10. D.G. Deppe, T.-H. Oh, D.L. Huffaker: “Eigenmode confinement in the dielectrically apertured Fabry–Perot microcavity”, IEEE Photonics Tech. Lett. 9, 713–715 (1997)

    Article  ADS  Google Scholar 

  11. C.C. Hansing, H. Deng, D.L. Huffaker, D.G. Deppe, B.G. Streetman, J. Sarathy: “Low-threshold continuous-wave surface-emitting lasers with etched-void confinement”, IEEE Photonics Tech. Lett. 6, 320–322 (1994)

    Article  ADS  Google Scholar 

  12. K.L. Lear, R.P. Schneider Jr., K.D. Choquette, S.P. Kilcoyne: “Index-guiding effects in implant and oxide-confined vertical-cavity surface-emitting lasers’,, IEEE Photonics Tech. Lett. 8, 740–742 (1996)

    Article  ADS  Google Scholar 

  13. D.G. Deppe, D.L. Huffaker, C.C. Lin, T.J. Rogers: “Nearly planar low-threshold vertical-cavity surface-emitting lasers using high contrast mirrors and native oxide,” in: Conference on Lasers and Electro-Optics, Anaheim, CA, May 8–13, 1994, Technical Digest Series 8, CPD2–1/3–6/8 (1994)

    Google Scholar 

  14. R.F. Harrington: Time-Harmonic Electromagnetic Fields, pp. 186–189 ( McGraw–Hill, New York, 1961 )

    Google Scholar 

  15. G.R. Hadley: “Effective-index model for vertical-cavity surface-emitting lasers”, Opt. Lett. 20, 1483–1485 (1995)

    Article  ADS  Google Scholar 

  16. T.-H. Oh, D.L. Huffaker, D.G. Deppe: “Size effects in small oxide-confined vertical-cavity surface-emitting lasers”, Appl. Phys. Lett. 69, 3152–3154 (1996)

    Article  ADS  Google Scholar 

  17. K.D. Choquette, R.P. Schneider Jr., K.L. Lear, K.M. Geib: “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation”, Electron. Lett. 30, 2043–2044 (1994)

    Article  Google Scholar 

  18. K.L. Lear, K.D. Choquette, R.P. Scheider Jr., S.P. Kilcoyne, K.M. Geib: “Selective oxidized vertical-cavity surface-emitting laers with 50% power conversion effiency”, Electron. Lett. 31, 208–209 (1995)

    Article  Google Scholar 

  19. D.L. Huffaker, J. Shin, D.G. Deppe: “Low-threshold half-wave vertical-cavity lasers”, Electron. Lett. 30, 1946–1947 (1994)

    Article  Google Scholar 

  20. Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga: “Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native-oxide confinement structure”, Electron. Lett. 31, 560–562 (1995)

    Article  ADS  Google Scholar 

  21. G.M. Yang, M.H. MacDougal, P.D. Dapkus: “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation”, Electron. Lett. 31, 886–888 (1995)

    Article  Google Scholar 

  22. G.M. Yang, M.H. MacDougal, V. Pudikov, P.D. Dapkus: “Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers”, IEEE Photonics Tech. Lett. 7, 1228–1230 (1995)

    Article  ADS  Google Scholar 

  23. D.L. Huffaker, L.A. Graham, H. Deng, D.G. Deppe: “Sub-40 PA continuous-wave lasing in an oxidized vertical-cavity surface-emitting laser with dielectric mirrors”, IEEE Photonics Tech. Lett. 8, 974–976 (1996)

    Article  ADS  Google Scholar 

  24. D.L. Huffaker, D.G. Deppe: “Improved performance of oxide-confined vertical-cavity surface-emitting lasers using a tunnel-injection active region”, Appl. Phys. Lett. 71, 1449–1451 (1997)

    Article  ADS  Google Scholar 

  25. R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Wiegl, K. Ebeling: “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs”, Electron. Lett. 33, 330–331 (1997)

    Article  Google Scholar 

  26. B. Weigl, M. Grabherr, G. Reiner, K.J. Ebeling: “High efficiency selectively oxidized MBE-grown vertical-cavity surface-emitting lasers”, Electron. Lett. 32, 557–558 (1996)

    Article  Google Scholar 

  27. B. Weigl, M. Grabherr, R. Michalzik, G. Reiner, K.J. Ebeling: “High-power single-mode selectively oxidized vertical-cavity surface-emitting lasers”, IEEE Photonics Tech. Lett. 8, 971–973 (1996)

    Article  ADS  Google Scholar 

  28. M. Grabherr, R. Hager, R. Michalzik, B. Weigl, G. Reiner, K.J. Ebeling: “Efficiency single-mode oxide-confined GaAs VCSELs emitting in the 850 nm wavelength regime”, IEEE Photonics Tech. Lett. 9, 1304–1306 (1997)

    Article  ADS  Google Scholar 

  29. K.L. Lear, A. Mar, K.D. Choquette, S.P. Kilcoyne, R.P. Schneider Jr., K.M. Geib: “High-frequency modulation of oxide-confined vertical-cavity surface-emitting laser”, Electron. Lett. 32, 457–458 (1996)

    Article  Google Scholar 

  30. B.J. Thibeault, K. Bertilsson, E.R. Hegblom, E. Strzelecka, P.D. Floyd, R. Naone, L.A. Coldren: “High-speed characteristics of low-optical loss oxideapertured vertical-cavity lasers”, IEEE Photonics Tech. Lett. 9, 11–13 (1997)

    Article  ADS  Google Scholar 

  31. G.R. Hadley: “Optical modeling of vertical-cavity surface-emitting lasers”, in: Proceedings of the 9th Annual Meeting of the IEEE Lasers and Electro-Optics Society 1, 142–143 (1996)

    Google Scholar 

  32. L.A. Coldren, B.J. Thibeault, E.R. Hegblom, G.B. Thompson, J.W. Scott: “Dielectric apertures as intracavity lenses in vertical-cavity lasers”, Appl. Phys. Lett. 68, 313–315 (1996)

    Article  ADS  Google Scholar 

  33. B.J. Thibeault, E.R. Hegblom, P.D. Floyd, R. Naone, Y. Akulova, L.A. Coldren: “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 ˚A) oxide aperture”, IEEE Photonics Tech. Lett. 8, 593–595 (1996)

    Article  ADS  Google Scholar 

  34. E.R. Hegblom, D.I. Babic, B.J. Thibeault, L.A. Coldren: “Scattering losses from dielectric apertures in vertical-cavity lasers”, IEEE J. Sel. Topics Quantum Electron. 3, 379–389 (1997)

    Article  Google Scholar 

  35. B. Demeulenaere, B. Dhoedt, R. Baets: “Design of AlAs-oxidized VCSELs with stable fundamental mode operation”, in: Proceedings of the 10th Annual Meeting of the IEEE Lasers and Electro-Optics Society 2, 352–353 (1997)

    Google Scholar 

  36. M.J. Noble, J.P. Loehr, J.A. Lott: “Calculation of VCSEL lasing mode threshold gain with the weighted index method”, in: Proceedings of the 10th Annual Meeting of the IEEE Lasers and Electro-Optics Society 2, 354–355 (1997)

    Google Scholar 

  37. D.G. Deppe, Q. Deng: “Self-consistent eigenmode analysis of the dielectrically apertured Fabry–Perot microcavity”, Appl. Phys. Lett. 71, 160–162 (1997)

    Article  ADS  Google Scholar 

  38. Q. Deng, D.G. Deppe: “Self-consistent calculation of the lasing eigenmode of the dielectrically apertured Fabry–Perot microcavity with idealized or distributed Bragg reflectors”, IEEE J. Quantum Electron. 33, 2319–2326 (1997)

    Article  ADS  Google Scholar 

  39. B. Klein, L.F. Register, K. Hess, D.G. Deppe: “Self-consistent Green’s function approach to the analysis of dielectrically apertured vertical-cavity surface-emitting lasers”, Appl. Phys. Lett. 73, 3324–3326 (1998)

    Article  ADS  Google Scholar 

  40. T.-H. Oh, D.L. Huffaker, D.G. Deppe: “Comparison of vertical-cavity surface-emitting lasers with half-wave cavity spacers confined by single-or double-oxide apertures”, IEEE Photonics Tech. Lett. 9, 875–877 (1997)

    Article  ADS  Google Scholar 

  41. W.W. Chow, K.D. Choquette, M.H. Crawford, K.L. Lear, G.R. Hadley: “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers”, IEEE J. Quantum Electron. 33, 1810–1824 (1997)

    Article  ADS  Google Scholar 

  42. N.M. Margalit, D.I. Babic, K. Streubel, R.P. Mirin, D.E. Mars, J.E. Bowers, E.L. Hu: “Laterally oxidized long wavelength CW vertical-cavity lasers”, Appl. Phys. Lett. 69, 471–472 (1996)

    Article  ADS  Google Scholar 

  43. Y. Qian, Z.H. Zhu, Y.H. Lo, D.L. Huffaker, D.G. Deppe, H.Q. Hou, B.E. Hammons, W. Lin, Y.K. Tu: “Long-wavelength (1.3 pm) vertical-cavity surface-emitting lasers with a wafer-bonded mirror and an oxygen-implanted confinement region” Appl. Phys. Lett. 71, 25–27 (1997)

    Article  ADS  Google Scholar 

  44. H. Shoji, K. Mukai, N. Ohtsuka, M. Sugawara, T. Uchida, H. Ischikawa: “Lasing at three-dimensionally quantum-confined sub-level of self-organized In0.5Ga0.5As quantum dots by current injection”, IEEE Photonics Tech. Lett. 7, 1385–1387 (1995)

    Article  ADS  Google Scholar 

  45. N.N. Ledentsov, V.A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Bimberg, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, P.S. Kop’ev, S.V. Zaitsev, N.Y. Gordeev, Z.I. Alferov, A.I. Borovkov, A.O. Kosogov, S.S. Ruvimov, P. Werner, U. Gosele, J. Heydenreich: “Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth”, Phys. Rev. B 54, 8743–8750 (1996)

    Article  ADS  Google Scholar 

  46. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Suagawara, N. Yokoyama, H. Ishikawa: “Room-temperature CW operation in the ground state of self-formed quantum dot lasers with multi-stacked dot layer”, Electron. Lett. 32, 20–23 (1996)

    Article  Google Scholar 

  47. Q. Xie, A. Kalburge, P. Chen, A. Madhukar: “Observation of lasing from vertically self-organized InAs three-dimensional island quantum boxes on GaAs (001)”, IEEE Photonics Tech. Lett. 8, 965–967 (1996)

    Article  ADS  Google Scholar 

  48. K. Kamath, P. Bhattacharya, T. Sosnowski, T. Norris, J. Phillips: “Room-temperature operation of In0.4Ga0.6As/GaAs self-organized quantum dot lasers”, Electron. Lett. 32, 1374–1375 (1996)

    Article  Google Scholar 

  49. R. Mirin, A. Gossard, J. Bowers: “Room-temperature lasing from InGaAs quantum dots”, Electron. Lett. 32, 1732–1734 (1996)

    Article  Google Scholar 

  50. D.L. Huffaker, G. Park, Z. Zou, O.B. Shchekin, D.G. Deppe: “1.3 Pm room-temperature GaAs-based quantum-dot laser”, Appl. Phys. Lett. 73, 2564–2466 (1998)

    Article  ADS  Google Scholar 

  51. H. Saito, K. Nishi, I. Ogura, S. Sugov, Y. Sugimoto: “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser”, Appl. Phys. Lett. 69, 3140–3142 (1996)

    Article  ADS  Google Scholar 

  52. D.L. Huffaker, O. Baklenov, L.A. Graham, B.G. Streetman, D.G. Deppe: “Quantum dot vertical-cavity surface-emitting laser with a dielectric aperture”, Appl. Phys. Lett. 70, 2356–2358 (1997)

    Article  ADS  Google Scholar 

  53. D.L. Huffaker, L.A. Graham, D.G. Deppe: “Low-threshold continuous-wave operation of an oxide-confined vertical-cavity surface-emitting laser based on a quantum dot active region and half-wave cavity”, Electron. Lett. 33, 1225–1226 (1997)

    Article  Google Scholar 

  54. J.A. Lott, N.N. Ledentsov, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, P.S. Kop’ev, Z.I. Alferov, D. Bimberg: “Vertical-cavity lasers based on vertically coupled quantum dots”, Electron. Lett. 33, 1150–1151 (1997)

    Article  Google Scholar 

  55. D.L. Huffaker, H. Deng, D.G. Deppe: “1.15 pm wavelength oxide-confined quantum dot vertical-cavity surface-emitting laser”, IEEE Photonics Tech. Lett. 10, 185–187 (1998)

    Article  ADS  Google Scholar 

  56. K.H. Drexhage: “Interaction of light with monomolecular dye layers”, in: E. Wolf (ed.), Progress in Optics, Vol. XII, Chap. IV. (North-Holland, Amsterdam, 1974 )

    Google Scholar 

  57. D.G. Deppe, J.C. Campbell, R. Kuchibhotla, T.J. Rogers, B.G. Streetman: “Optically-coupled mirror-quantum-well InGaAs–GaAs light-emitting diode” Electron. Lett. 26, 1665–1667 (1990)

    Article  ADS  Google Scholar 

  58. E.F. Shubert, Y.-H. Wang, A.Y. Cho, L.-W. Tu, G.J. Zydzik: “Resonant-cavity light-emitting diodes”, Appl. Phys. Lett. 60, 9–21 (1991)

    Google Scholar 

  59. H. DeNeve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, G. Borghs: “High-efficiency planar microcavity LEDs”, IEEE Photonics Tech. Lett. 7, 2–87 (1995)

    Google Scholar 

  60. D.L. Huffaker, C.C. Lin, J. Shin, D.G. Deppe: “Resonant-cavity light-emitting diode with an AlxOy/GaAs reflector”, Appl. Phys. Lett. 66, 3096–3098 (1995)

    Article  ADS  Google Scholar 

  61. J.J. Wierer, D.A. Kellogg, N. Holonyak Jr.: “Tunnel contact junction native-oxide aperture and mirror vertical-cavity surface-emitting lasers and resonant-cavity light-emitting diodes”, Appl. Phys. Lett. 74, 926–928 (1999)

    ADS  Google Scholar 

  62. K. Ujihara: “Spontaneous emission and the concept of effective area in a very short cavity with plane-parallel dielectric mirrors”, Jpn. J. Appl. Phys. 30, L901–L903 (1991)

    Article  ADS  Google Scholar 

  63. J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg: “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998)

    Article  ADS  Google Scholar 

  64. T. Tezuka, S. Nunoue, H. Hoshida, T. Noda: “Spontaneous emission enhancement in pillar-type microcavities”, Jpn. J. Appl. Phys. 32, L54–L56 (1993)

    Article  ADS  Google Scholar 

  65. L.A. Graham, D.L. Huffaker, Q. Deng, D.G. Deppe: “Controlled spontaneous lifetime in microcavity-confined InGaAlAs/GaAs quantum dots”, Appl. Phys. Lett. 72, 1670–1672 (1998)

    Article  ADS  Google Scholar 

  66. Q. Deng, D.G. Deppe: “Spontaneous lifetime change in a dielectricallyapertured Fabry–Perot microcavity”, Optics Express 2, 157–162 (1998)

    Article  ADS  Google Scholar 

  67. B. Klein, K. Hess, D.G. Deppe: unpublished

    Google Scholar 

  68. L.A. Graham, D.L. Huffaker, S.M. Csutak, Q. Deng, D.G. Deppe: “Spontaneous lifetime control of quantum dot emitters in apertured microcavities”, J. Appl. Phys. 85, 3383–3385 (1999)

    Article  ADS  Google Scholar 

  69. L.A. Graham, D.L. Huffaker, D.G. Deppe: “Spontaneous lifetime control in a native-oxide-apertured-microcavity”, Appl. Phys. Lett. (1999), accepted for publication

    Google Scholar 

  70. E.M. Purcell: “Spontaneous emission probabilities at radio frequencies” Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  71. C.C. Lin, D.G. Deppe, C. Lei: “Role of waveguide light emission in planar microcavities”, IEEE J. Quantum Electron. 30, 2304–2313 (1994)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deppe, D.G. (2003). Low-Power Vertical-Cavity Surface-Emitting Lasers and Microcavity Light-Emitting Diodes Based on Apertured-Microcavities. In: Li, H.E., Iga, K. (eds) Vertical-Cavity Surface-Emitting Laser Devices. Springer Series in Photonics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05263-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05263-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08743-1

  • Online ISBN: 978-3-662-05263-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics