Pharmacology and Pharmacokinetics of Nicotine

  • Knut-Olaf Haustein

Abstract

Nicotine is the principal alkaloid of the tobacco plant. Alkaloids from other plants, e. g., coniine (from hemlock), cytisine (from laburnum) and lobeline (from Lobelia inflata or Indian tobacco), possess actions partly resembling those of nicotine (Box 4.1). Nicotine was first isolated from the leaves of tobacco, Nicotiana tabacum, by Posselt and Reimann in 1828, and Orfila performed the earliest pharmacological analysis of its effects in 1843.

Keywords

Schizophrenia Noradrenaline NMDA Choline Acetylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. [1]
    Langley JN, Anderson HK. The actions of nicotine on the ciliary ganglion of the third cranial nerve. J Physiol (Lond) 1892; 13:460–468.Google Scholar
  2. [2]
    Dale HH. The action of certain esters and ethers of choline and their relation to muscarine. J Pharmacol exp Ther 1914; 6:147–190.Google Scholar
  3. [3]
    Karlin A. Structure of nicotinic acetylcholine receptors. Curr Opin Neurobiol 1993; 3(3):299–309.PubMedCrossRefGoogle Scholar
  4. [4]
    McGehee DS, Role LW. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 1995; 57:521–546.PubMedCrossRefGoogle Scholar
  5. [5]
    Barrantes FJ. Molecular Pathology of thre Nicotinic Acetylcholine Receptor. In: FJ Barrantes, ed. The Nicotine Acetylcholine Receptor. Current Views and Future Trends. Berlin-Heidelberg-New York: Springer-Verlag. 1998:175–216.Google Scholar
  6. [6]
    Wonnacott S. Characterization of brin nicotinic receptor sites. In: S Wonnacott MRISe, ed. Nicotine Psychopharmacology: Molecular, Cellular and Behavioural Aspects. Oxford, London: Oxford University Press. 1990: 226–277.Google Scholar
  7. [7]
    Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ. A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 1992; 41:31–37.PubMedGoogle Scholar
  8. [8]
    Williams N, Sullivan JP, Arneric SP. Neuronal nicotinic acetylcholine receptors. DN&P 1994; 7:205–223.Google Scholar
  9. [9]
    Wonnacott S. The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol Sci 1990; 11(6):216–219.PubMedCrossRefGoogle Scholar
  10. [10]
    Chen D, Patrick JW. The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the alpha7 subunit. J Biol Chem 1997; 272:24024–24029.PubMedCrossRefGoogle Scholar
  11. [11]
    Grutter T, Changeux JP. Nicotinic receptors in wonderland. Trends Biochem Sci 2001; 26(8):459–463.PubMedCrossRefGoogle Scholar
  12. [12]
    Corringer PJ, Le Novere N, Changeux JP. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 2000; 40:431–458.PubMedCrossRefGoogle Scholar
  13. [13]
    Lena C, Changeux JP. Allosteric modulations of the nicotinic acetylcholine receptor. Trends Neurosci 1993; 16(5):181–186.PubMedCrossRefGoogle Scholar
  14. [14]
    Changeux JP, Edelstein SJ. Allosteric receptors after 30 years. Neuron 1998; 21:959–980.PubMedCrossRefGoogle Scholar
  15. [15]
    McGehee DS, Role LW. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 1995; 57:521–546.PubMedCrossRefGoogle Scholar
  16. [16]
    Kuryatov A, Olale FA, Choi C, Lindstrom J. Acetylcholine receptor extracellular domain determines sensitivity to nicotine-induced inactivation. Eur J Pharmacol 2000; 393(1–3):11–21.PubMedCrossRefGoogle Scholar
  17. [17]
    McGehee DS, Heath MJ, Gelber S, Devay P, Role LW. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995; 269(5231):1692–1696.PubMedCrossRefGoogle Scholar
  18. [18]
    Benwell ME, Balfour DJ, Anderson JM. Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain. J Neurochem 1988; 50(4):1243–1247.PubMedCrossRefGoogle Scholar
  19. [19]
    Collins AC, Luo Y, Selvaag S, Marks MJ. Sensitivity to nicotine and brain nicotinic receptors are altered by chronic nicotine and mecamylamine infusion. J Pharmacol Exp Ther 1994; 271(1):125–133.PubMedGoogle Scholar
  20. [20]
    Gotti C, Moretti M, Maggi R, Longhi R, Hanke W, Klinke N et al. Alpha7 and alpha8 nicotinic receptor subtypes immunopurified from chick retina have different immunological, pharmacological and functional properties. Eur J Neurosci 1997; 9: 1201–1211.PubMedCrossRefGoogle Scholar
  21. [21]
    Anderson DJ, Arneric SP. Nicotinic receptor binding of [3H]cytisine, [3H]nicotine and [3H]methylcarbamylcholine in rat brain. Eur J Pharmacol 1994; 253:261–267.PubMedCrossRefGoogle Scholar
  22. [22]
    Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, Johnson EC. Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J Pharmacol exp Ther 1997; 280:346–356.PubMedGoogle Scholar
  23. [23]
    Papke RL, Sanberg PR, Shytle RD. Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes. J Pharmacol exp Ther 2001; 297:646–656.PubMedGoogle Scholar
  24. [24]
    Popik P, Layer RT, Fossom LH, Benveniste M, Geter-Douglass B, Witkin JM et al. NMDA antagonist properties of the putative antiaddictive drug, ibogaine. J Pharmacol exp Ther 1995; 275:753–760.PubMedGoogle Scholar
  25. [25]
    Slemmer JE, Martin BR, Damaj MI. Bupropion is a nicotinic antagonist. J Pharmacol exp Ther 2000; 295(1):321–327.PubMedGoogle Scholar
  26. [26]
    Yamakura T, Chavez-Noriega LE, Harris RA. Subunit-dependent inhibition of human neuronal nicotinic acetylcholine receptors and other ligand-gated ion channels by dissociative anesthetics ketamine and dizocilpine. Anesthesiology 2000; 92(4):1144–1153.PubMedCrossRefGoogle Scholar
  27. [27]
    Ke L, Lukas RJ. Effects of steroid exposure on ligand binding and functional activities of diverse nicotinic acetylcholine receptor subtypes. J Neurochem 1996; 67:1100–1112.PubMedCrossRefGoogle Scholar
  28. [28]
    Paradiso K, Sabey K, Evers AS, Zorumski CF, Covey DF, Steinbach JH. Steroid inhibition of rat neuronal nicotinic alpha4beta2 receptors expressed in HEK 293 cells. Mol Pharmacol 2000; 58(2):341–351.PubMedGoogle Scholar
  29. [29]
    Valera S, Ballivet M, Bertrand D. Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 1992; 89:9949–9953.PubMedCrossRefGoogle Scholar
  30. [30]
    Wang HY, Lee DH, Davis CB, Shank RP. Amyloid peptide Abeta(l–42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 2000 Sep;75(3):1155-61 2000; 75:1155–1161.Google Scholar
  31. [31]
    Balfour DJ. Neural mechanisms underlying nicotine dependence. Addiction 1994; 89(11):1419–1423.PubMedCrossRefGoogle Scholar
  32. [32]
    Benwell ME, Balfour JK. Nicotine binding to brain tissue from drug-naive and nicotine-treated rats. J Pharm Pharmacol 1985; 37(6):405–409.PubMedCrossRefGoogle Scholar
  33. [33]
    Marks MJ, Burch JB, Collins AC. Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther 1983; 226(3):817–825.PubMedGoogle Scholar
  34. [34]
    Schwartz RD, Kellar KJ. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 1983; 220(4593):214–216.PubMedCrossRefGoogle Scholar
  35. [35]
    Wonnacott S, Irons J, Rapier C, Thorne B, Lunt GG. Presynaptic modulation of transmitter release by nicotinic receptors. Prog Brain Res 1989; 79:157–163.PubMedCrossRefGoogle Scholar
  36. [36]
    Marks MJ, Pauly JR, Gross SD, Deneris ES, Hermans-Borgmeyer I, Heinemann SF et al. Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci 1992; 12(7):2765–2784.PubMedGoogle Scholar
  37. [37]
    Clarke PB, Pert A. Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res 1985; 348(2):355–358.PubMedCrossRefGoogle Scholar
  38. [38]
    Corrigall WA, Franklin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 1992; 107(2–3):285–289.CrossRefGoogle Scholar
  39. [39]
    Dani JA, Heinemann S. Molecular and cellular aspects of nicotine abuse. Neuron 1996; 16(5):905–908.PubMedCrossRefGoogle Scholar
  40. [40]
    Balfour DJ, Benwell ME, Birrell CE, Kelly RJ, Al Aloul M. Sensitization of the meso-accumbens dopamine response to nicotine. Pharmacol Biochem Behav 1998; 59:1021–1030.PubMedCrossRefGoogle Scholar
  41. [41]
    Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev 1987; 94(4):469–492.PubMedCrossRefGoogle Scholar
  42. [42]
    Joseph MH, Young AM, Gray JA. Are neurochemistry and reinforcement enough — Can the abuse potential of drugs be explained by common actions an a dopamine reward system in the brain? Human Psychopharmacology 1996; 11:55–63.CrossRefGoogle Scholar
  43. [43]
    Henschler D. Tabak, S. 809–815, in: Pharmakologie und Toxikologie, 6. Aufl. Hrsg. W. Forth, D. Henschler, W. Rummel, K. Starke. Wissenschaftsverlag: Mannheim-Leipzig-Wien-Zürich 1992.Google Scholar
  44. [44]
    Roth L, Daunderer M, Korman K (Hrsg). Giftpflanzen-Pflanzengifte: Vorkommen-Wirkung-Therapie. Nicotin, S. IV-3-N, 3–5. ecomed Verlag Landsberg 1984.Google Scholar
  45. [45]
    Quensel M, Agardh CD, Nilsson-Ehle P. Nicotine does not affect plasma lipoprotein concentrations in healthy men. Scand J Clin Lab Invest 1989; 49(2):149–153.PubMedCrossRefGoogle Scholar
  46. [46]
    Warburton DM. Nicotine: an addictive substance or a therapeutic agent? Prog Drug Res 1989; 33:9–41.PubMedCrossRefGoogle Scholar
  47. [47]
    Winternitz WW, Quillen D. Acute hormonal response to cigarette smoking. J Clin Pharmacol 1977; 17(7):389–397.PubMedGoogle Scholar
  48. [48]
    Targovnik JH. Nicotine, corticotropin, and smoking withdrawal symptoms: literature review and implications for successful control of nicotine addiction. Clin Ther 1989; 11(6):846–853.PubMedGoogle Scholar
  49. [49]
    Benowitz NL. Pharmacologic aspects of cigarette smoking and nicotine addiction. N Engl J Med 1988; 319:1318–1330.PubMedCrossRefGoogle Scholar
  50. [50]
    Jaffe JH. Drug addiction and drug abuse: Nicotine and tobacco, pp 554-558. IN: Gilman AG, Goldman LS, Rall TW and Murrad S (Eds): Goodman and Gilman’s the Pharmacological basis of therapeutics. New York Macmillan 1985.Google Scholar
  51. [51]
    Zevin S, Gourlay SG, Benowitz NL. Clinical pharmacology of nicotine. Clin Dermatol 1998; 16(5):557–564.PubMedCrossRefGoogle Scholar
  52. [52]
    Hoffmann D, Wynder EL. Aktives und Passives Rauchen, S. 589-605, in: H Marquardt u. SG Schäfer: Lehrbuch der Toxikologie. Wissenschaftsverlag Mannheim-Leipzig-Wien-Zürich 1994.Google Scholar
  53. [53]
    Benowitz NL. Pharmacokinetic considerations in understanding nicotine dependence. In: The Biology of Nicotine Dependence. Ciba Foundation symposium 152. Chichester. John Wiley and Sons 1990; 23:186–209.Google Scholar
  54. [54]
    Benowitz NL, Porchet H, Sheiner L, Jacob P. Nicotine absorbtion and cardiovascular effects with smokeless tobacco use: Comparison with cigarettes and nicotin gum. Clin Pharamcol Ther 1988; 5:23–28.CrossRefGoogle Scholar
  55. [55]
    Henningfield JE, Miyasato K, Jasinski DR. Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J Pharmacol exp Ther 1985; 234:1–12.PubMedGoogle Scholar
  56. [56]
    Benowitz NL, Jaffe JH. Drug addiction an drug abuse: Nicotine and tobacco IN: Gilman AG, Goodman AS, Rall TW and Murrad eds. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. New York Macmillan 1985; 4:554–558.Google Scholar
  57. [57]
    Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 1998; 155:1009–1015.PubMedGoogle Scholar
  58. [58]
    Fagerstrom KO, Kunze M, Schoberberger R, Breslau N, Hughes JR, Hurt RD et al. Nicotine dependence versus smoking prevalence: comparisons among countries and categories of smokers. Tob Control 1996; 5(1):52–56.PubMedCrossRefGoogle Scholar
  59. [59]
    DSM-IV. American psychiatric association: Diagnostic and Statistical manuel of Mental Disorder, e. d 4th. Washington, American Psychatric Association. 1994.Google Scholar
  60. [60]
    Goldberg SR, Spealman RD, Goldberg DM. Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 1981; 214(4520):573–575.PubMedCrossRefGoogle Scholar
  61. [61]
    Spitz MR, Shi H, Yang F, Hudmon KS, Jiang H, Chamberlain RM et al. Case-control study of the D2 dopamine receptor gene and smoking status in lung cancer patients. J Natl Cancer Inst 1998; 90(5):358–363.PubMedCrossRefGoogle Scholar
  62. [62]
    Clarke PB. Dopaminergic mechanisms in the locomotor stimulant effects of nicotine. Biochem Pharmacol 1990; 40(7):1427–1432.PubMedCrossRefGoogle Scholar
  63. [63]
    Clarke PB. Tobacco smoking, genes, and dopamine. Lancet 1998; 352(9122):84–85.PubMedCrossRefGoogle Scholar
  64. [64]
    Benwell ME, Balfour DJ, Lucchi HM. Influence of tetrodotoxin and calcium on changes in extracellular dopamine levels evoked by systemic nicotine. Psychopharmacology (Berl) 1993; 112(4):467–474.CrossRefGoogle Scholar
  65. [65]
    Nisell M, Nomikos GG, Svensson TH. Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 1994; 16(1):36–44.PubMedCrossRefGoogle Scholar
  66. [66]
    Shoaib M, Benwell ME, Akbar MT, Stolerman IP, Balfour DJ. Behavioural and neurochemical adaptations to nicotine in rats: influence of NMDA antagonists. Br J Pharmacol 1994; 111(4):1073–1080.PubMedCrossRefGoogle Scholar
  67. [67]
    Benwell MEM, Balfour DJK, Anderson JM. Smoking Associated canges in srotonergic systems of discrete regions of human brain. Psychopharmacology 1990; 102:68–72.PubMedCrossRefGoogle Scholar
  68. [68]
    Benwell MEM, Balfour DJK. Effects of nicotine administration and its withdrawal an plasma corticosterone and brain 5-hydroxinidoles. Psychopharmacology 1979; 4: 7–11.CrossRefGoogle Scholar
  69. [69]
    Graeff FG, Guimaraes FS, De Andrade TG, Deakin JF. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 1996; 54(1):129–141.PubMedCrossRefGoogle Scholar
  70. [70]
    Brioni JD, O’Neill AB, Kim DJ, Buckley MJ, Decker MW, Arneric SP. Anxiolytic-like effects of the novel cholinergic channel activator ABT-418. J Pharmacol Exp Ther 1994; 271(1):353–361.PubMedGoogle Scholar
  71. [71]
    Costall B, Kelly ME, Naylor RJ, Onaivi ES. The actions of nicotine and cocaine in a mouse model of anxiety. Pharmacol Biochem Behav 1989; 33(1):197–203.PubMedCrossRefGoogle Scholar
  72. [72]
    Morrison CF. The effects of nicotine on punished behaviour. Psychopharmacologia 1969; 14(3):221–232.PubMedCrossRefGoogle Scholar
  73. [73]
    Ribeiro EB, Bettiker RL, Bogdanov M, Wurtman RJ. Effects of systemic nicotine on serotonin release in rat brain. Brain Res 1993; 621(2):311–318.PubMedCrossRefGoogle Scholar
  74. [74]
    Deakin JFW, Graeff FG. 5-HT and mechanisms of defence. J Psychopharmacol 1991; 5:305–315.PubMedCrossRefGoogle Scholar
  75. [75]
    Breslau N, Kilbey MM, Andreski P. Nicotine dependence and major depression. New evidence from a prospective investigation. Arch Gen Psychiatry 1993; 50(1):31–35.PubMedCrossRefGoogle Scholar
  76. [76]
    Pomerleau OF, Pomerleau CS. Neuroregulators and the reinforcement of smoking: towards a biobehavioral explanation. Neurosci Biobehav Rev 1984; 8:503–513.PubMedCrossRefGoogle Scholar
  77. [77]
    Aceto MD, Scates SM, Ji Z, Bowman ER. Nicotine’s opioid and anti-opioid interactions: proposed role in smoking behavior. Eur J Pharmacol 1993; 248:333–335.PubMedGoogle Scholar
  78. [78]
    Chait LD, Griffiths RR. Effects of methadone on human cigarette smoking and subjective ratings. J Pharmacol exp Ther 1984; 229:636–640.PubMedGoogle Scholar
  79. [79]
    Mello NK, Mendelson JH, Sellers ML, Kuehnle JC. Effects of heroin self-administration on cigarette smoking. Psychopharmacology (Bed) 1980; 67:45–52.CrossRefGoogle Scholar
  80. [80]
    Ismail Z, el Guebaly N. Nicotine and endogenous opioids: toward specific pharmacotherapy. Can J Psychiatry 1998; 43:37–42.PubMedGoogle Scholar
  81. [81]
    Albuquerque EX, Pereira EF, Mike A, Eisenberg HM, Maelicke A, Alkondon M. Neuronal nicotinic receptors in synaptic functions in humans and rats: physiological and clinical relevance. Behav Brain Res 2000; 113(1–2):131–141.PubMedCrossRefGoogle Scholar
  82. [82]
    Kushner SA, Dewey SL, Kornetsky C. Gamma-vinyl GABA attenuates cocaine-induced lowering of brain stimulation reward thresholds. Psychopharmacology (Berl) 1997; 133(4):383–388.CrossRefGoogle Scholar
  83. [83]
    Smolders I, Khan GM, Lindekens H, Prikken S, Marvin CA, Manil J et al. Effectiveness of vigabatrin against focally evoked pilocarpine-induced seizures and concomitant changes in extracellular hippocampal and cerebellar glutamate, gamma-aminobutyric acid and dopamine levels, a microdialysis-electrocorticography study in freely moving rats. J Pharmacol Exp Ther 1997; 283(3):1239–1248.PubMedGoogle Scholar
  84. [84]
    Bailey SL, Ennett ST, Ringwalt CL. Potential mediators, moderators, or independent effects in the relationship between parents’ former and current cigarette use and their children’s cigarette use. Addict Behav 1993; 18(6):601–621.PubMedCrossRefGoogle Scholar
  85. [85]
    Koopmans JR, van Doornen LJ, Boomsma DI. Association between alcohol use and smoking in adolescent and young adult twins: a bivariate genetic analysis. Alcohol Clin Exp Res 1997; 21(3):537–546.PubMedGoogle Scholar
  86. [86]
    Hannah MC, Hopper JL, Mathews JD. Twin concordance for a binary trait. II. Nested analysis of ever-smoking and ex-smoking traits and unnested analysis of a “committed-smoking” trait. Am J Hum Genet 1985; 37(1):153–165.PubMedGoogle Scholar
  87. [87]
    Heath AC, Madden PA, Slutske WS, Martin NG. Personality and the inheritance of smoking behavior: a genetic perspective. Behav Genet 1995; 25(2):103–117.PubMedCrossRefGoogle Scholar
  88. [88]
    Pianezza ML, Sellers EM, Tyndale RE Nicotine metabolism defect reduces smoking. Nature 1998; 393(6687):750.PubMedCrossRefGoogle Scholar
  89. [89]
    Oscarson M, Gullsten H, Rautio A, Bernal ML, Sinues B, Dahl ML et al. Genotyping of human cytochrome P450 2A6 (CYP2A6), a nicotine C-oxidase. FEBS Lett 1998; 438(3):201–205.PubMedCrossRefGoogle Scholar
  90. [90]
    Carr LA, Basham JK, York BK, Rowell PP. Inhibition of uptake of 1-methyl-4-phenylpyridinium ion and dopamine in striatal synaptosomes by tobacco smoke components. Eur J Pharmacol 1992; 215:285–287.PubMedCrossRefGoogle Scholar
  91. [91]
    Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 1988; 85:5274–5278.PubMedCrossRefGoogle Scholar
  92. [92]
    Henningfield JE, Schuh LM, Jarvik ME. Pathophysiology of tobacco dependence. In: Bloom FE, Kupfer DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York: Raven Press. 1995:1715–1730.Google Scholar
  93. [93]
    O’Neill MF, Dourish CT, Iversen SD. Evidence for an involvement of D1 and D2 dopamine receptors in mediating nicotine-induced hyperactivity in rats. Psychopharmacology (Berl) 1991; 104:343–350.CrossRefGoogle Scholar
  94. [94]
    Noble EP, Blum K, Ritchie T, Montgomery A, Sheridan PJ. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry 1991; 48:648–654.PubMedCrossRefGoogle Scholar
  95. [95]
    Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, Jagadeeswaran P et al. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990; 263(15):2055–2060.PubMedCrossRefGoogle Scholar
  96. [96]
    Comings DE, Muhleman D, Gysin R. Dopamine D2 receptor (DRD2) gene and susceptibility to posttraumatic stress disorder: a study and replication. Biol Psychiatry 1996; 40(5):368–372.PubMedCrossRefGoogle Scholar
  97. [97]
    Comings DE, Ferry L, Bradshaw-Robinson S, Burchette R, Chiu C, Muhleman D. The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking. Pharmacogenetics 1996; 6:73–79.PubMedCrossRefGoogle Scholar
  98. [98]
    Noble EP, Noble RE, Ritchie T, Syndulko K, Bohlman MC, Noble LA et al. D2 dopamine receptor gene and obesity. Int J Eat Disord 1994; 15:205–217.PubMedCrossRefGoogle Scholar
  99. [99]
    Goldman D, Brown GL, Albaugh B, Goodson S, Trunzo M, Akhtar L, Wynne DK et al. D2 receptor genotype and linkage disequilibrium and function in Finnish, American Indian, and U. S. Caucasian patients. In: Gershon ES, Cloninger CR, eds. Genetic Approaches to Mental Disorders. Washington DC: American Psychiatric Press. 1994: 327–344.Google Scholar
  100. [100]
    Noble EP, Blum K, Khalsa ME, Ritchie T, Montgomery A, Wood RC et al. Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend 1993; 33(3):271–285.PubMedCrossRefGoogle Scholar
  101. [101]
    Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, Ozkaragoz T et al. Genetic predisposition in alcoholism: association of the D2 dopamine receptor TaqI B1 RFLP with severe alcoholics. Alcohol 1993; 10(1):59–67.PubMedCrossRefGoogle Scholar
  102. [102]
    Noble EP. The D2 dopamine receptor gene: a review of association studies in alcoholism. Behav Genet 1993; 23(2):119–129.PubMedCrossRefGoogle Scholar
  103. [103]
    Bannon MJ, Granneman JG, Kapatos G. The dopamine transporter: Potential involvement in neuropsychiatric disorders. In: Bloom FE, Kupfer DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York: Raven Press. 1995: 179–188.Google Scholar
  104. [104]
    Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J 1990; 4:2737–2744.PubMedGoogle Scholar
  105. [105]
    Cook EH, Jr., Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995; 56:993–998.PubMedGoogle Scholar
  106. [106]
    Comings DE, Wu S, Chiu C, Ring RH, Gade R, Ahn C et al. Polygenic inheritance of Tourette syndrome, stuttering, attention deficit hyperactivity, conduct, and oppositional defiant disorder: the additive and subtractive effect of the three dopaminergic genes — DRD2, D beta H, and DAT1. Am J Med Genet 1996; 67:264–288.PubMedCrossRefGoogle Scholar
  107. [107]
    Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 1992; 14:1104–1106.PubMedCrossRefGoogle Scholar
  108. [108]
    Gelernter J, O’Malley S, Risch N, Kranzler HR, Krystal J, Merikangas K et al. No association between an allele at the D2 dopamine receptor gene (DRD2) and alcoholism. JAMA 1991; 266:1801–1807.PubMedCrossRefGoogle Scholar
  109. [109]
    Lerman C, Caporaso NE, Audrain J, Main D, Bowman ED, Lockshin B et al. Evidence suggesting the role of specific genetic factors in cigarette smoking. Health Psychol 1999; 18(1):14–20.PubMedCrossRefGoogle Scholar
  110. [110]
    George SR, Cheng R, Nguyen T, Israel Y, O’Dowd BE Polymorphisms of the D4 dopamine receptor alleles in chronic alcoholism. Biochem Biophys Res Commun 1993; 196(1):107–114.PubMedCrossRefGoogle Scholar
  111. [111]
    True WR, Xian H, Scherrer JF, Madden PA, Bucholz KK, Heath AC et al. Common genetic vulnerability for nicotine and alcohol dependence in men. Arch Gen Psychiatry 1999; 56(7):655–661.PubMedCrossRefGoogle Scholar
  112. [112]
    Yates WR, Cadoret RJ, Troughton EP, Stewart M, Giunta TS. Effect of fetal alcohol exposure on adult symptoms of nicotine, alcohol, and drug dependence. Alcohol Clin Exp Res 1998; 22(4):914–920.PubMedCrossRefGoogle Scholar
  113. [113]
    West R, Hajek P. What happens to anxiety levels on giving up smoking? Am J Psychiatry 1997; 154(11):1589–1592.PubMedGoogle Scholar
  114. [114]
    Sharpies CGV, Wonnacott S. Neuronal Nicotinic Receptors. Tocris Reviews No. 19. 2001. Avonmouth BS11 8TA, UK, Tocris Cookson Ltd.Google Scholar
  115. [115]
    Benowitz NL, Porchet H, Jacob P. Pharmacokinetics, metabilism and pharmacodynamics of nicotine, in: wonnacott S, Rüssel MAH and Stolerman IP eds, Nicotine Psychopharmacology: Molecular, cellular and behavioral aspects. (New York) Oxford University Press 1990;(45):112-157.Google Scholar
  116. [116]
    Henningfield JE, Stapleton JM, Benowitz NL, Grayson RF, London ED. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug Alcohol Depend 1993; 33(1):23–29.PubMedCrossRefGoogle Scholar
  117. [117]
    Benowitz NL, Jacob P, III. Nicotine and carbon monoxide intake from high-and low-yield cigarettes. Clin Pharmacol Ther 1984; 36:265–270.PubMedCrossRefGoogle Scholar
  118. [118]
    Schneider NG, Lunell E, Olmstead RE, Fagerstrom KO. Clinical pharmacokinetics of nasal nicotine delivery. A review and comparison to other nicotine systems. Clin Pharmacokinet 1996; 31(1):65–80.PubMedCrossRefGoogle Scholar
  119. [119]
    Leshner AI. Understanding drug addiction: implications for treatment. Hosp Pract (Off Ed) 1996; 31:47–49.Google Scholar
  120. [120]
    Prince RJ, Sine SM. The ligand binding domains of the nicotinic acetylcholine receptor. In: Barrantes FJ, ed. The nicotinic acetylcholine receptor: Current views and future trends. Berlin — Heidelberg — New York: Springer, 1998: 31–59.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Knut-Olaf Haustein
    • 1
  1. 1.Institute for Nicotine Research and Smoking CessationErfurtGermany

Personalised recommendations