Semiconductor and Molecular-Assembly Nanowires

  • Tomoyuki Akutagawa
  • Takayoshi Nakamura
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 70)


Highly conducting nanowires are expected to be critical for functionalizing and integrating nanoscale electronic devices. Semiconductor nanowires are more important than metal nanowires from the viewpoint of device applications. Recent research on the preparation and fabrication of inorganic semiconductor nanowires were briefly reviewed. Molecular-assembly nanowires will have an important role in the complete bottom-up manufacture of molecular electronics, whose devices are built up from synthesized molecules through self-assembly processes. Such nanowires can be assembled from π-molecules through molecule-by-molecule π-stacking. Research on molecular conductors will offer guiding principles for constructing molecular nanowires with appropriate electronic properties. At the same time, supramolecular chemistry will offer powerful methods to build up molecular nanowires through self-assembly processes. Three kinds of molecular nanowires, tetrathiafulvalene (TTF)-halide, crown-ether-fused phthalocyanine, and amphiphilic TTF macrocycle are introduced as molecular-assembly nanowires composed of molecular conductors.


Semiconductor Nanowires Metal Nanowires Molecular Conductor Nanowire Structure Gate Voltage Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    SEMATECH: International Technology Roadmap for Semiconductors (SEMATECH, 1999)Google Scholar
  2. 2.
    P.A. Anton, R. Silberglitt, J. Schneider: The Global Technology Revolution ( Rand, Santa Monica 2001 )Google Scholar
  3. 3.
    F.L. Carter (ed.): Molecular Electronic Devices ( Dekker, New York 1987 );Google Scholar
  4. G.J. Ashwell (ed.): Molecular Electronics ( Wiley, New York 1992 ); M.C. PettyGoogle Scholar
  5. M.R. Bryce, D. Bloor: Introduction to Molecular Electronic Devices (Oxford University Press, New York 1995 );Google Scholar
  6. A. Aviram, M. Ratner (eds.): Molecular Electronics: Science and Technology ( New York Academy of Science, New York 1998 );Google Scholar
  7. C. Joachim, J.K. Gimzewski, A. Aviram: Nature 408, 541 (2000)CrossRefGoogle Scholar
  8. 4.
    J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams: Science 280, 1716 (1998);CrossRefGoogle Scholar
  9. J.R. Heath: Pure Appl. Chem. 72, 11 (2000)CrossRefGoogle Scholar
  10. 5.
    D.K. Ferry, S.M. Goodnick: in Transport in Nanostructures, ed. by H. Ahmed, M. Pepper, A. Broers ( Cambridge University Press, Cambridge 1997 )CrossRefGoogle Scholar
  11. 6.
    B. Albert, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology of the Cell ( Garland, New York 1994 );Google Scholar
  12. L. Stryer: Biochemistry ( Freeman, New York 1995 )Google Scholar
  13. 7.
    J.G. Nicholls, A.R. Martin, B.G. Wallace, P.A. Fuchs: From Neuron to Brain, 4th ed. ( Sinauer Associates, New York 2001 )Google Scholar
  14. 8.
    J.M. Tour: Acc. Chem. Res. 33, 791 (2000)CrossRefGoogle Scholar
  15. 9.
    A. Tsuda, A. Osuka: Science 293, 79 (2001);CrossRefGoogle Scholar
  16. A. Tsuda, A. Osuka: Adv. Mater. 14, 75 (2002)CrossRefGoogle Scholar
  17. 10.
    S.J. Tans, A.R.M. Verschueren, C. Dekker: Nature 393, 49 (1998);CrossRefGoogle Scholar
  18. Z. Yao, H.W.C. Postma, L. Balents, C. Dekker: Nature 402, 273 (1999);CrossRefGoogle Scholar
  19. M.S. Fuhrer, J. Nygârd, L. Shih, M. Forero, Y.G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen: Science 288, 494 (2000);CrossRefGoogle Scholar
  20. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Science 294, 1317 (2001);CrossRefGoogle Scholar
  21. M. Ahlskog, R. Tarkiainen, L. Roschier, P. Hakonen: Appl. Phys. Lett. 77, 4037 (2000);CrossRefGoogle Scholar
  22. M. Krüger, M.R. Buitelaar, T. Nussbaumer, C. Schönenberger: Appl. Phys. Lett. 78, 1291 (2001);CrossRefGoogle Scholar
  23. P.G. Collins, M.S. Arnold, P. Avouris: Science 292, 706 (2001)CrossRefGoogle Scholar
  24. 11.
    J. Hu, T.W. Odom, C.M. Lieber: Acc. Chem. Res. 32, 435 (1999)CrossRefGoogle Scholar
  25. 12.
    X. Duan, C.M. Lieber: Adv. Mater. 12, 298 (2000)CrossRefGoogle Scholar
  26. 13.
    W. Shi, Y. Zheng, N. Wang, C. Lee, S. Lee: Adv. Mater. 13, 591 (2001)CrossRefGoogle Scholar
  27. 14.
    X. Duan, C.M. Lieber: J. Am. Chem. Soc. 122, 188 (2000);CrossRefGoogle Scholar
  28. C. Chen, C. Yeh, C. Chen, M. Yu, H. Liu, J. Wu, K. Chen, L. Chen, J. Peng, Y. Chen: J. Am. Chem. Soc. 123, 2791 (2001);CrossRefGoogle Scholar
  29. C.C. Tang, S.S. Fan, H.Y. Dang, P. Li, Y.M. Liu: Appl. Phys. Lett. 77, 1961 (2000)CrossRefGoogle Scholar
  30. 15.
    M.S. Gudiksen, C.M. Lieber: J. Am. Chem. Soc. 122, 8801 (2000);CrossRefGoogle Scholar
  31. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber: Appl. Phys. Lett. 78, 2214 (2001)CrossRefGoogle Scholar
  32. 16.
    M.S. Gudiksen, J. Wang, C.M. Lieber: J. Phys. Chem. B 105, 4062 (2001)CrossRefGoogle Scholar
  33. 17.
    Y. Cui, X. Duan, J. Hu, C.M. Lieber: J. Phys. Chem. B. 104, 5213 (2000)CrossRefGoogle Scholar
  34. 18.
    S. Chung, J. Yu, J.R. Heath: Appl. Phys. Lett. 76, 2068 (2000)CrossRefGoogle Scholar
  35. 19.
    Y. Cui, C.M. Lieber: Science 291, 851 (2001)CrossRefGoogle Scholar
  36. 20.
    Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K. Kim, C.M. Lieber: Science 294, 1313 (2001)CrossRefGoogle Scholar
  37. 21.
    Y. Cui, Q. Wei, H. Park, C.M. Lieber: Science 293, 1289 (2001)CrossRefGoogle Scholar
  38. 22.
    J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber: Science 293, 1455 (2001);CrossRefGoogle Scholar
  39. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber: Nature 409, 66 (2001);CrossRefGoogle Scholar
  40. H. Kind, H. Yan, B. Messer, M. Law, P. Yang: Adv. Mater. 14, 158 (2002)CrossRefGoogle Scholar
  41. 23.
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C. Cheung, C.M. Lieber: Science 289, 94 (2000)CrossRefGoogle Scholar
  42. 24.
    R.S. Wagner, W.C. Ellis: Appl. Phys. Lett. 4, 89 (1964);CrossRefGoogle Scholar
  43. G.A. Bootsma, H.J. Gassen: J. Cryst. Growth 10, 223 (1971);CrossRefGoogle Scholar
  44. Y. Wu, P. Yang: J. Am. Chem. Soc. 123, 3165 (2001)CrossRefGoogle Scholar
  45. 25.
    D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu: J. Phys. Chem. 100, 14037 (1996)CrossRefGoogle Scholar
  46. 26.
    T.T. Albrecht, J. Schotter, G.A. Kästle, N. Emley, T. Shibauchi, L.K. Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell: Science 290, 2216 (2000)Google Scholar
  47. 27.
    B.H. Hong, S.C. Bae, C. Lee, S. Jeong, K.S. Kim: Science 294, 348 (2001)CrossRefGoogle Scholar
  48. 28.
    E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph: Nature 391, 775 (1998);CrossRefGoogle Scholar
  49. J. Richter, M. Mertig, W. Pompe, I. Mönch, H.K. Schackert: Appl. Phys. Lett. 78, 536 (2001)Google Scholar
  50. 29.
    T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro: Science 270, 1791 (1995);CrossRefGoogle Scholar
  51. T.J. Trentler, S.C. Goel, K.M. Hickman, A.M. Viano, M.Y. Chiang, A.M. Beatty, P.C. Gibbons, W.E. Buhro: J. Am. Chem. Soc. 119, 2172 (1997);CrossRefGoogle Scholar
  52. J.R. Heath, F.K.A. LeGoues: Chem. Phys. Lett. 208, 263 (1993)CrossRefGoogle Scholar
  53. 30.
    J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel: Science 287, 1471 (2000)CrossRefGoogle Scholar
  54. 31.
    M.P. Zach, K.H. Ng, R.M. Penner: Science 290, 2120 (2000)CrossRefGoogle Scholar
  55. 32.
    A.M. Morales, C.M. Lieber: Science 279, 208 (1998)CrossRefGoogle Scholar
  56. 33.
    J.H. Golden, F.J. DiSalvo, J.M.J. Fréchet, J. Silcox, M. Thomas, J. Elman: Science 273, 782 (1996)CrossRefGoogle Scholar
  57. 34.
    B. Messer, J.H. Song, P. Yang: J. Am. Chem. Soc. 122, 10232 (2000)CrossRefGoogle Scholar
  58. 35.
    Y. Huang, X. Duan, Q. Wei, C.M. Lieber: Science 291, 630 (2001)CrossRefGoogle Scholar
  59. 36.
    P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk: Appl. Phys. Lett. 77, 1399 (2000)CrossRefGoogle Scholar
  60. 37.
    M. Batzill, F. Bardou, K.J. Snowdon: Phys. Rev. B 63, 233–408 (2001)CrossRefGoogle Scholar
  61. 38.
    S.W. Chung, G. Markovich, J.R. Heath: J. Phys. Chem. B 102, 6685 (1998)CrossRefGoogle Scholar
  62. 39.
    K.D. Hermanson, S.O. Lumsdon, J.P. Williams, E.W. Kaler, O.D. Velev: Science 294, 1082 (2001)CrossRefGoogle Scholar
  63. 40.
    C. Kittel: Introduction to Solid State Physics, 6th ed. ( Wiley, New York 1986 )Google Scholar
  64. 41.
    J.D. Wright: Molecular Crystals (Cambridge University Press, Cambridge 1987 ); E.A. Silinsh, V. Câpek: Organic Molecular Crystals, Interaction, Localization and Transport Phenomena ( AIP Press, New York 1994 )Google Scholar
  65. 42.
    J.M. Lehn: Supramolecular Chemistry (VCH, Weinheim 1995); F. Vögtle: Supramolecular Chemistry (Wiley, Tokyo 1995 ); J.W. Steed, J.L. Atwood: Supramolecular Chemistry ( Wiley, Chichester 2000 )Google Scholar
  66. 43.
    T. Akutagawa, T. Hasegawa, T. Nakamura: Handbook of Advanced Electronic and Photonic Materials and Devices, Vol 3, ed. by H.S. Nalwa ( Academic Press, San Diego 2000 )Google Scholar
  67. 44.
    D.O. Cowan: New Aspects of Organic Chemistry, ed. by Z. Yoshida, T. Shiba, Y. Oshiro (Kodansha, Tokyo 1989); Organic Conductors, ed. by J.P. Farges (Dekker, New York 1994); Handbook of Organic Conductive Molecules and Polymers, Vol. 1. ed. by H.S. Nalwa ( Wiley, Stuttgart 1997 )Google Scholar
  68. 45.
    J.M. Williams, J.R. Ferraro, R.J. Thorn, K.D. Carlson, U. Geiser, H. Wang, A.M. Kini, M.H. Whangbo: Organic Superconductors (Prentice-Hall, Englewood Cliffs 1992 ); T. Ishiguro, K. Yamaji, G. Saito: Organic Superconductors, 2nd ed. ( Springer, New York 1998 )Google Scholar
  69. 46.
    F. Favier, H. Liu, R.M. Penner: Adv. Mater. 13, 1567 (2001)CrossRefGoogle Scholar
  70. 47.
    F.B. Kaufman, E.M. Engler, D.C. Green, J.Q. Chambers: J. Am. Chem. Soc. 98, 1596 (1976);CrossRefGoogle Scholar
  71. B.A. Scott, S.J. LaPlace, J.B. Torrance, B.D. Silverman, B. Welber: J. Am. Chem. Soc. 99, 6631 (1977);CrossRefGoogle Scholar
  72. J.S. Miller (ed.); Extended Linear Chain Compounds ( Plenum, New York 1982 )Google Scholar
  73. 48.
    J.H. Fuhrhop, J. Köning: in Membranes and Molecular Assemblies: The Synkinetic Approach, ed. by J.F. Stoddart ( Royal Society of Chemistry, Cambridge 1994 )Google Scholar
  74. 49.
    C.F. van Nostrum, S.J. Picken, A.J. Schouten, R.J.M. Nolte: J. Am. Chem. Soc. 117, 9957 (1995);CrossRefGoogle Scholar
  75. C.F. van Nostrum, R.J.M. Nolte: Chem. Commun. 2385 (1996);Google Scholar
  76. C.F. van Nostrum: Adv. Mater. 8, 1027 (1996);CrossRefGoogle Scholar
  77. H. Engelkamp, S. Middelbeek, R.J.M. Nolte: Science 284, 785 (1999)CrossRefGoogle Scholar
  78. 50.
    T.J. Marks: Angew. Chem. Int. Ed. Engl. 29, 857 (1990)Google Scholar
  79. 51.
    T. Akutagawa, T. Ohta, T. Hasegawa, T. Nakamura, C.A. Christensen, J. Becher: Proc. Natl. Acad. Sci. USA. 99, 5028 (2002)CrossRefGoogle Scholar
  80. 52.
    R.W.G. Wyckoff: Crystal Structures, Vol. 4. (Wiley, New York 1960 ); J. Limade-Faria: Structural Mineralogy: An Introduction ( Kluwer, Dordrecht 1994 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tomoyuki Akutagawa
  • Takayoshi Nakamura

There are no affiliations available

Personalised recommendations