Skip to main content

Monte Carlo Simulations and Application to Manganite Models

  • Chapter
  • 935 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 136))

Abstract

Partition functions and functional integrals (path integrals) reduce many-body problems to complicated multidimensional integrals or sums. Monte Carlo simulations are tools to evaluate in an approximate way these integrals/sums, allowing for fairly precise calculation of observables. The results are exact within statistic and controlled systematic errors. This is a powerful procedure that supplements analytical calculations. A large variety of physical properties can be studied in a wide range of parameters with relatively small effort, allowing the investigation of low, intermediate, and large coupling regimes, where analytical techniques cannot be controlled. The simulations give results that can often be directly compared with experiments, offering a method to determine if a given model contains the essential physics of a system. This allows for a systematic exploration of the relationship between microscopical models and experimental observations, varying the parameters of a model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Binder, and D.W. Heerman: Monte Carlo Simulation in Statistical Physics ( Springer, Berlin Heidelberg New York 1992 )

    MATH  Google Scholar 

  2. K. Binder (Ed.): The Monte Carlo Method in Condensed Matter Physics. Topics Appl. Phys. Vol. 71 ( Springer, Berlin Heidelberg New York 1992 )

    Google Scholar 

  3. J.J. Binney, N.J. Dowrick, A.J. Fisher, and M.E.J. Newman: The Theory of Critical Phenomena, An Introduction to the Renormalization Group ( Oxford Science Pub., Oxford 1993 )

    Google Scholar 

  4. J.W. Negele and H. Orland: Quantum Many-Particle Systems (Addison-Wesley, 1988 )

    Google Scholar 

  5. E. Manousakis: Rev. Mod. Phys. 63, 1 (1991)

    Google Scholar 

  6. N. Metropolis, A. Rosenbluth, M. Rosenbluth, and A. Teller: J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  7. Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing (Fortran Numerical Recipes, Vol. 2) W.H. Press et al. (Eds.)

    Google Scholar 

  8. R.H. Swendsen, and J.-S. Wang: Phys. Rev. Lett. 58, 86 (1987)

    Article  ADS  Google Scholar 

  9. U. Wolff: Phys. Rev. Lett. 62, 361 (1989)

    Article  ADS  Google Scholar 

  10. L. Onsager: Phys. Rev. 65, 117 (1944); B. Kauffman and L. Onsager: Phys. Rev. 76, 1244 (1949)

    Article  MATH  Google Scholar 

  11. D.M. Ceperley: Rev. Mod. Phys. 67, 279 (1995); N. Trivedi and D.M, Ceperley: Phys. Rev. B 41, 4552 (1990)

    Google Scholar 

  12. W. von der Linden: A Quantum Monte Carlo Approach to Many-Body Physics,Phys. Rep. 230,53 (1992)

    Google Scholar 

  13. R. Blankenbecler, D.J. Scalapino, and R.L. Sugar: Phys. Rev. D 24, 2278 (1981); J.E. Gubernatis, D.J. Scalapino, R.L. Sugar, and W.D. Toussaint: Phys. Rev. B 32, 103 (1985)

    Google Scholar 

  14. S.R. White, D.J. Scalapino, R.L. Sugar, E.Y. Loh, J.E. Gubernatis, and R.T. Scalettar: Phys. Rev. B 40, 506 (1989)

    Article  ADS  Google Scholar 

  15. M. Suzuki: Prog. Theor. Phys. 56, 1454 (1976)

    Article  ADS  MATH  Google Scholar 

  16. H. Trotter: Proc. Am. Math. Soc. 10, 545 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  17. R.J. Glauber: J. Math. Phys. 4, 294 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. N. Shibata, K. Ueda: Phys. Rev. B 51, 6 (1995)

    Google Scholar 

  19. J. Zang, H. Röder, A.R. Bishop, and S.A. Trugman: J. Phys. Condens. Matter. 9, L157 (1997)

    Article  ADS  Google Scholar 

  20. E. Dagotto, S. Yunoki, A.L. Malvezzi, A. Moreo, J. Hu: Phys. Rev. B 58, 6414 (1998)

    Article  ADS  Google Scholar 

  21. J. Riera, K. Hallberg, E. Dagotto: Phys. Rev. Lett. 79, 713 (1997) 7.22 P. Gambardella et al.: Nature 416, 301 (2002)

    Google Scholar 

  22. A. Auerbach: Interacting Electrons and Quantum Magnetism ( Springer, Berlin Heidelberg New York 1994 )

    Book  Google Scholar 

  23. N.D. Mermin and H. Wagner: Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  24. E. Manousakis: Rev. Mod. Phys. 63, 1 (1991)

    Article  ADS  Google Scholar 

  25. I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki: Commun. Math. Phys. 115, 477 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Frolich, R. Israel, E.H. Lieb and B. Simon: Commun. Math. Phys. 62, 1 (1978)

    Article  ADS  Google Scholar 

  27. H. Nakano and M. Takahashi: Phys. Rev. B 52, 6606 (1995)

    Article  ADS  Google Scholar 

  28. B.S. Shastry: Phys. Rev. Lett. 60, 639 (1988)

    Article  ADS  Google Scholar 

  29. F.D.M. Haldane: Phys. Rev. Lett. 60, 635 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  30. F.J. Dyson: Commun. Math. Phys. 21, 269 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  31. B. Simon: J. Stat. Phys. 26, 307 (1981)

    Article  ADS  MATH  Google Scholar 

  32. R.B. Griffiths: Phys. Rev. 136A, 327 (1964)

    Google Scholar 

  33. L. Onsager: Phys. Rev. 65, 117 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. D. Knuth, The Art of Computer Programming (Addison-Wesley, 1973 )

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alvarez, G., Feiguin, A. (2003). Monte Carlo Simulations and Application to Manganite Models. In: Nanoscale Phase Separation and Colossal Magnetoresistance. Springer Series in Solid-State Sciences, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05244-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05244-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07753-1

  • Online ISBN: 978-3-662-05244-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics