The One-Orbital Model: Phase Diagram and Dominant Correlations

  • A. Moreo
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 136)

Abstract

This chapter describes the main results available in the context of the one-orbital model for manganites. This model appears in the literature also as the ferromagnetic Kondo model or the double-exchange model. We use the name “one-orbital model” to highlight the differences with the more realistic two-orbital model with Jahn Teller phonons, also analyzed extensively in this book. The information provided in this chapter includes phase diagrams and dominant ordering tendencies in the ground state. It also includes the regimen of electronic phase separation believed to be of relevance for Mn oxides. A similar phenomenon, although not involving ferromagnetism, has been widely discussed in the Cu oxide literature as well [1.3]. This chapter also contains a brief review by A. Moreo of related spin-fermion models used in the context of high-T c superconductors. A simple model of interacting localized spins and mobile electrons clearly finds applications in several contexts, including also heavy fermions and diluted magnetic semiconductors.

Keywords

Nickel Cobalt Manganese Sine Compressibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    S. Yunoki, J. Hu, A.L. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto: Phys. Rev. Lett. 80, 845 (1998)ADSCrossRefGoogle Scholar
  2. 6.2
    E. Dagotto, S. Yunoki, A.L. Malvezzi, A. Moreo, J. Hu, S. Capponi, D. Poilblanc, and N. Furukawa: Phys. Rev. B 58, 6414 (1998)ADSCrossRefGoogle Scholar
  3. 6.
    D. Vollhardt et al.: cond-mat/9701150; T. Okabe: cond-mat/9707032; K. Held and D. Vollhardt: Eur. Phys. J. B 5,473 (1998); J. Wahle et al.: Phys. Rev. B 58,12749 (1998); and references thereinGoogle Scholar
  4. 6.4
    J.L. Alonso, L.A. Fernandez, F. Guinea, V. Laliena, and V. Martin-Mayor: Nucl. Phys. B 596, 587 (2001)ADSMATHCrossRefGoogle Scholar
  5. 6.
    Y. Motome and N. Furukawa: cond-mat/0007407. See also N. Furukawa, Y. Motome, and H. Nakata: cond-mat/0103316Google Scholar
  6. 6.6
    H. Yi, N.H. Hur, and J. Yu: Phys. Rev. B 61, 9501 (2000)ADSCrossRefGoogle Scholar
  7. 6.7
    H. Röder, R.R.P. Singh, and J. Zang: Phys. Rev. B 56, 5084 (1997)ADSCrossRefGoogle Scholar
  8. 6.8
    M.J. Calderon and L. Brey: Phys. Rev. B 58, 3286 (1998)ADSCrossRefGoogle Scholar
  9. 6.
    Y. Motome and N. Furukawa: cond-mat/0007408. See also Y. Motome and N. Furukawa: cond-mat/0103230Google Scholar
  10. 6.10
    N. Furukawa: J. Phys. Soc. Jpn. 64, 2754 (1995)ADSCrossRefGoogle Scholar
  11. 6.
    M. Yu. Kagan, D.I. Khomskii and M.V. Mostovoy: Eur. Phys. J B 12217 (1999). See also M.Y. Kagan, K.I. Kugel, and D.I. Khomskii: JETP 93415 (2001) (cond-mat/0001245)Google Scholar
  12. 6.12
    D.I. Khomskii: Physica B 280, 325 (2000)ADSCrossRefGoogle Scholar
  13. 6.13
    D. Arovas and F. Guinea: Phys. Rev. B 58, 9150 (1998). See also D. Arovas, G. Gomez-Santos, and F. Guinea: Phys. Rev. B 59, 13569 (1999), and F. Guinea, G. Gomez-Santos, and D. Arovas: Phys. Rev. B 62, 391 (2000)CrossRefGoogle Scholar
  14. 6.
    K. Nagai, T. Momoi, and K. Kubo: preprint, cond-mat/9911091Google Scholar
  15. 6.
    Using symmetry arguments F. Zhong and Z.D. Wang: Phys. Rev. B 6011883 (1999) also arrived at the conclusion that PS is present in manganites. M. Guerrero and R.M. Noack: cond-mat/0004265 found PS in the periodic Anderson model as well. P. Schlottmann: Phys. Rev. B 5911484 (1999) also found PS in a simple alloy-analogy model. S-Q. Shen and Z.D. Wang: Phys. Rev. B 58,R8877 (1998) found PS in studies of the one-orbital model. See also R.Y. Gu et al.: cond-mat/9905152. B.M. Letfulov and J.K. Freericks: (cond-mat/0203262) report phase separation in the Falicov—Kimball model with phononsGoogle Scholar
  16. 6.16
    C. Perroni, G. De Filippis, V. Cataudella and G. ladonisi: cond-mat/0106588, preprint 2001Google Scholar
  17. 6.17
    B.M. Letfulov: Eur. Phys. J. B 14, 19 (2000)ADSCrossRefGoogle Scholar
  18. 6.
    V. Cataudella, G. De Filippis, and G. Iadonisi: cond-mat/0011156Google Scholar
  19. 6.
    D.I. Golosov: cond-mat/0110322; to appear in J. Appl. Phys. (2002). See also D.I. Golosov, cond-mat/0206257.Google Scholar
  20. 6.
    Y. Motome and M. Imada: ISSN 0082–4798, preprintGoogle Scholar
  21. 6.21
    K.A. Müller, and G. Benedek (Eds): Proc. of the Conference Phase Separation in Cuprate Superconductors ( World Scientific, Singapore 1993 )Google Scholar
  22. 6.22
    P.B. Visscher: Phys. Rev. B 10, 943 (1974)ADSCrossRefGoogle Scholar
  23. 6.23
    T. Hotta, A.L. Malvezzi, and E. Dagotto: Phys. Rev. B 62, 9432 (2000)ADSCrossRefGoogle Scholar
  24. 6.24
    E.L. Nagaev: JETP Lett. 6, 18 (1967); E.L. Nagaev: Soy. Phys. Lett. 27, 122 (1968); E.L. Nagaev: JETP Lett. 16, 394 (1972)Google Scholar
  25. 6.25
    E.L. Nagaev: Phys. Stat. Sol. (b) 186, 9 (1994); E.L. Nagaev: Phys.-Usp. 38, 497 (1995)CrossRefGoogle Scholar
  26. 6.26
    E.L. Nagaev: Phys.-Usp. 39, 781 (1996); E.L. Nagaev: Phys. Rev. B 58, 2415 (1998)CrossRefGoogle Scholar
  27. 6.27
    A. Mauger and D.L. Mills: Phys. Rev. Lett. 53, 1594 (1984)ADSCrossRefGoogle Scholar
  28. 6.
    M.P. Marder: Condensed Matter Physics (Wiley & Sons, 2000)Google Scholar
  29. 6.
    Studies using the dynamical mean-field approximation (D = oo) applied to the double-exchange model are in good agreement with the phase diagram found numerically in the opposite limit of low dimensions. Not only AF, FM, and phase separation but also spin-incommensurate regimes clearly appear in the T = 0 phase diagram. See A. Chattopadhyay, A.J. Millis, and S. Das Sarma: cond-mat/0004151. See also Fig. 3 of A. Chattopadhyay, A.J. Millis, and S. Das Sarma: Phys. Rev. B 61 10738 (2000)Google Scholar
  30. 6.
    S.R. White: Phys. Rev. Lett. 69 2863 (1992). For a review see K. Hallberg: cond-mat/9910082; and references thereinGoogle Scholar
  31. 6.
    A. Weisse, J. Loos, and H. Fehske: cond-mat/0101234 and cond-mat/0101235, preprintsGoogle Scholar
  32. 6.32
    E. Dagotto and T.M. Rice: Science 271, 618 (1996)ADSCrossRefGoogle Scholar
  33. 6.33
    J. Riera, K. Hallberg, and E. Dagotto: Phys. Rev. Lett. 79, 713 (1997)ADSCrossRefGoogle Scholar
  34. 6.
    L.-C. Ku, S.A. Trugman, and J. Bonca: cond-mat/0109282; and references thereinGoogle Scholar
  35. 6.35
    C. Gazza, G. Martins, J. Riera, and E. Dagotto: Phys. Rev. B 59, R709 (1999)ADSCrossRefGoogle Scholar
  36. 6.36
    A.L. Malvezzi, S. Yunoki, and E. Dagotto: Phys. Rev. B 59, 7033 (1999)ADSCrossRefGoogle Scholar
  37. 6.
    J. Lorenzana, C. Castellani, C. Di Castro: cond-mat/0010092, and references thereinGoogle Scholar
  38. 6.
    E.L. Nagaev: Phys. Stat. Sol. (b) 186 9 (1994); Phys.-Usp. 38 497 (1995). For more recent references, see E.L. Nagaev: cond-mat/0012321Google Scholar
  39. 6.39
    C.S. Hellberg: cond-mat/0010429. See also Q. Yuan and P. Thalmeier: Phys. Rev. Lett. 83, 3502 (1999); R. Pietig, R. Bulla, and S. Blawid: Phys. Rev. Lett. 82, 4046 (1999)ADSCrossRefGoogle Scholar
  40. 6.40
    S. Yunoki and A. Moreo, Phys. Rev. B 58, 6403 (1998)ADSCrossRefGoogle Scholar
  41. 6.41
    A. Moreo, M. Mayr, A. Feiguin, S. Yunoki, and E. Dagotto: Phys. Rev. Lett. 84, 5568 (2000)ADSCrossRefGoogle Scholar
  42. 6.42
    S. Yunoki, T. Hotta, and E. Dagotto: Phys. Rev. Lett. 84, 3714 (2000)ADSCrossRefGoogle Scholar
  43. 6.43
    D.J. Garcia, K. Hallberg, C.D. Batista, M. Avignon, and B. Alascio: Phys. Rev. Lett. 85, 3720 (2000)ADSCrossRefGoogle Scholar
  44. 6.44
    For other studies on the relevance of JAI’, see H. Yi and J. Yu: Phys. Rev. B 58, 11123 (1998); H. Yi and S-I. Lee: Phys. Rev. B 60, 6250 (1999); H. Yi, J. Yu, and S-I. Lee: cond-mat/9910152. See also D.I. Golosov, M.R. Norman, and K. Levin: Phys. Rev. B 58, 8617 (1998)ADSGoogle Scholar
  45. 6.45
    H. Aliaga, B. Normand, K. Hallberg, M. Avignon, and B. Alascio: Phys. Rev. B 64, 024422 (2001)Google Scholar
  46. 6.46
    M. Yamanaka, W. Koshibae and S. Maekawa: Phys. Rev. Lett. 81, 5604 (1998)ADSCrossRefGoogle Scholar
  47. 6.47
    D.F. Agterberg and S. Yunoki: Phys. Rev. B 62, 13816 (2000)ADSCrossRefGoogle Scholar
  48. 6.48
    J.L. Alonso, J.A. Capitan, L.A. Fernández, F. Guinea, and V. Martin-Mayor: Phys. Rev. B 64, 054408 (2001)Google Scholar
  49. 6.49
    J.L. Alonso, L.A. Fernández, F. Guinea, V. Laliena, and V. Martin-Mayor: Phys. Rev. B 63, 064416 (2001)Google Scholar
  50. 6.50
    J.L. Alonso, L.A. Fernández, F. Guinea, V. Laliena, and V. Martin-Mayor: Phys. Rev. B 63, 054411 (2001)Google Scholar
  51. 6.51
    For other studies on the relevance of the complex phase of the hopping matrix element, see V.Z. Cerovski, S.D. Mahanti, T.A. Kaplan, and A. Taraphder: Phys. Rev. B 59, 13977 (1999)CrossRefGoogle Scholar
  52. 6.
    G.-M. Zhao: Phys. Rev. B 62 11639 (2000); M. Vogt, C. Santos, and W. Nolting: Phys. Stat. Sol. (b) 223 679 (2001); D. Meyer, C. Santos, and W. Nolting: J. Phys.: Condens. Matter 13 2531 (2001); W. Nolting, G.G. Reddy, A. Ramakanth and D. Meyer: Phys. Rev. B 64155109 (2001); D.M. Edwards and A.C.M. Green: cond-mat/0109266Google Scholar
  53. 6.53
    H. Tsunetsugu, M. Sigrist and K. Ueda: Rev. Mod. Phys. 69, 809 (1997)ADSCrossRefGoogle Scholar
  54. 6.54
    J. Kondo: Prog. Theor. Phys. 32, 37 (1964)ADSCrossRefGoogle Scholar
  55. 6.55
    L. Kouwenhoven and L. Glazman: Phys. World, January 2001, p. 33Google Scholar
  56. 6.56
    J.R. Schrieffer: J. Low Temp. Phys. 99, 397 (1995); B.L. Altshuler et al.: Phys. Rev. B 52, 5563 (1995); A. Chubukov: Phys. Rev. B 52, R3840 (1995); C.-X. Chen et al.: Phys. Rev. B 43, 3771 (1991)CrossRefGoogle Scholar
  57. 6.57
    C. Buhler et al.: Phys. Rev. Lett. 84, 2690 (2000)ADSCrossRefGoogle Scholar
  58. 6.58
    C. Buhler et al.: Phys. Rev. B 62, R3620 (2000)ADSCrossRefGoogle Scholar
  59. 6.59
    M. Moraghebi et al.: Phys. Rev. B 63, 214513 (2001)Google Scholar
  60. 6.
    M. Moraghebi, S. Yunoki, and A. Moreo: Phys. Rev. Lett. 88,187001 (2002) 6.61 M. Moraghebi, S. Yunoki, and A. Moreo: cond-mat/0205201Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. Moreo

There are no affiliations available

Personalised recommendations