Advertisement

Phase Diagrams and Basic Properties of Manganites

  • Elbio Dagotto
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 136)

Abstract

La1−x Ca x MnO3 is among the most-studied compounds of the manganite family. Among the reasons for its popularity are its robust magnetoresistance effect, larger than in other much-studied materials such as La1−x Sr x MnO3, and the possibility of analyzing the phase diagram at all values of the Ca concentration (most manganites can only be studied in a more restrictive hole-density range). La1−x Ca x MnO3 is usually labeled as a “low” bandwidth manganite, but it may be better to consider it as a representative of “intermediate” bandwidth compounds. The reason is that this material still has a ferromagnetic metallic phase in a robust density range, unlike truly low-bandwidth compounds such as Pr1−x Ca x MnO3 (discussed later) where the metallic phase is only induced by external magnetic fields.

Keywords

Phase Diagram Curie Temperature Hole Density Orbital Order Wigner Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1
    P. Schiffer, A.P. Ramirez, W. Bao, and S.-W. Cheong: Phys. Rev. Lett. 75, 3336 (1995)ADSCrossRefGoogle Scholar
  2. 3.2
    P.G. Radaelli, D.E. Cox, M. Marezio, S-W. Cheong, P.E. Schiffer, and A.P. Ramirez: Phys. Rev. Lett. 75, 4488 (1995)ADSCrossRefGoogle Scholar
  3. 3.3
    N.W. Ashcroft and N.D. Mermin: Solid State Physics (Saunders College, 1976 )Google Scholar
  4. 3.4
    S.-W. Cheong and H.Y. Hwang: Ferromagnetism vs Charge/Orbital Ordering in Mixed-Valent Manganites, in Colossal Magnetoresistance Oxides, edited by Y. Tokura (Gordon & Breach, Monographs in Condensed Matter Science, London 1999 )Google Scholar
  5. 3.
    Y-K. Yoo, F. Duewer, H. Yang, D. Yi, J-W. Li, and X-D. Xiang: Nature 406,704 (2000). See also R. W. Cahn: Nature 410,643 (2001) and references thereinGoogle Scholar
  6. 3.6
    Y. Nagaoka: Phys. Rev. 147, 392 (1966)ADSCrossRefGoogle Scholar
  7. 3.7
    R. Mahendiran, S. Tiwari, A. Raychaudhuri, T. Ramakrishnan, R. Mahesh, N. Rangavittal, and C.N.R. Rao: Phys. Rev. B 53, 3348 (1996); H. Chiba, M. Kikuchi, K. Kusaba, Y. Muroba, and Y. Syono: Solid State Commun. 99, 499 (1996); A. Maignan, C. Martin, F. Damay, and B. Raveau: Chem. Mater. 10, 950 (1998); C. Martin, A. Maignan, M. Hervieu, and B. Raveau: J. Solid State Chem. 134, 198 (1997)Google Scholar
  8. 3.8
    S. Mori, C.H. C.en, and S.-W. Cheong: Nature 392, 473 (1998)Google Scholar
  9. 3.9
    P.G. Radaelli, D.E. Cox, L. Capogna, S.-W. Cheong, and M. Marezio: Phys. Rev. B 59, 14440 (1999)ADSCrossRefGoogle Scholar
  10. 3.10
    J.J. Neumeier, M.F. Hundley, J.D. Thompson, and R.H. Heffner: Phys. Rev. B 52, R7006 (1995)ADSCrossRefGoogle Scholar
  11. 3.11
    H.Y. Hwang, T.T.M. Palstra, S-W. Cheong, and B. Batlogg: Phys. Rev. B 52, 15046 (1995)ADSCrossRefGoogle Scholar
  12. 3.
    G-M. Zhao, K. Conder, H. Keller, and K.A. Müller: Nature 381,676 (1996). See also G-M. Zhao et al.: cond-mat/9912355, cond-mat/0008029, and references therein. For work in cuprates, see G-M. Zhao, H. Keller, and K. Conder: J. Phys. Condens. Matter 13,R569 (2001) and references therein. See also C.A. Perroni, G. De Filippis, V. Cataudella, G. Iadonisi, V. Marigliano Ramaglia, and F. Ventriglia: cond-mat/0203121Google Scholar
  13. 3.
    I. Isaac and J.P. Franck: Phys. Rev. B 57,R5602 (1998); J.P. Franck et al.: Phys. Rev. B 585189 (1998); J.P. Franck et al.: J. Supercond. 12,263 (1999); J.E. Gordon et al.: submitted to PRLGoogle Scholar
  14. 3.
    Y. Tomioka and Y. Tokura: Metal-Insulator Phenomena Relevant to Charge/Orbital-Ordering in Perovskite-Type Manganese Oxides,1999 preprintGoogle Scholar
  15. 3.15
    T. Asaka, S. Yamada, S. Tsutsumi, C. Tsuruta, K. Kimoto, T. Arima, and Y. Matsui: Phys. Rev. Lett. 88, 097201 (2002)Google Scholar
  16. 3.16
    H.Y. Hwang, T.T.M. Palstra, S-W. Cheong, and B. Batlogg: Phys. Rev. B 52, 15046 (1995)ADSCrossRefGoogle Scholar
  17. 3.17
    Y. Moritomo, H. Kuwahara, Y. Tomioka, and Y. Tokura: Phys. Rev. B 55, 7549 (1997)ADSCrossRefGoogle Scholar
  18. 3.18
    Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura: Phys. Rev. B 53, R1689 (1996)ADSCrossRefGoogle Scholar
  19. 3.19
    A. Urushibara et al.: Phys. Rev. B51, 14103 (1995). See also Tokura et al.: J. Phys. Soc. Jpn. 63, 3931 (1994)ADSCrossRefGoogle Scholar
  20. 3.20
    H. Fujishiro, M. Ikebe, and Y. Konno: J. Phys. Soc. Jpn. 67, 1799 (1998)ADSCrossRefGoogle Scholar
  21. 3.21
    Y. Moritomo et al.: Phys. Rev. B 58, 5544 (1998)ADSCrossRefGoogle Scholar
  22. 3.
    I.E. Dzyaloshinskii: J. Phys. Chem. Solids 4 241 (1958); T. Moriya:, Phys. Rev. 120 91 (1960). For more recent literature see D. Coffey, K. Bedell, and S. Trugman: Phys. Rev. B 42 6509 (1990); D. Coffey, T.M. Rice, and F.C. Zhang: Phys. Rev. B 44 10112 (1991). For recent work on manganites addressing the Dzyaloshinksy Moriya interaction see J. Deisenhofer et al., cond-mat/0108515.Google Scholar
  23. 3.23
    W.E. Pickett and J.S. Moodera: Phys. Today, May 2001, p. 39Google Scholar
  24. 3.24
    R.A. de Groot et al.: Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  25. 3.25
    K.-I. Kobayashi et al.: Nature 395, 677 (1998)ADSCrossRefGoogle Scholar
  26. 3.26
    J.-H. Park et al.: Nature 392, 794 (1998). See also J.-H. Park et al.: Phys. Rev. Lett. 76, 4215 (1996)ADSCrossRefGoogle Scholar
  27. 3.27
    Y. Tokura: Fundamental Features of Colossal Magnetoresistive Manganese Oxides, in Colossal Magnetoresistance Oxides edited by Y. Tokura (Gordon & Breach, Monographs in Condensed Matter Science, London 1999 )Google Scholar
  28. 3.28
    R. Kajimoto et al.: Phys. Rev. B 60, 9506 (1999)ADSCrossRefGoogle Scholar
  29. 3.
    H. Kawano et al.: cond-mat/9808286Google Scholar
  30. 3.30
    H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, and Y. Tokura: Phys. Rev. Lett. 78, 4253 (1997)ADSCrossRefGoogle Scholar
  31. 3.
    R. Kajimoto, H. Yoshizawa, Y. Tomioka, and Y. Tokura: cond-mat/0110170, preprintGoogle Scholar
  32. 3.32
    T. Hotta, Y. Takada, H. Koizumi, and E. Dagotto: Phys. Rev. Lett. 84, 2477 (2000)ADSCrossRefGoogle Scholar
  33. 3.33
    Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura: Nature 480, 141 (1996)ADSCrossRefGoogle Scholar
  34. 3.
    Y. Imry: Introduction to Mesoscopic Physics (Oxford University Press, 1997)Google Scholar
  35. 3.35
    N.F. Mott: Metal Insulator Transitions ( Taylor and Francis, London 1990 )Google Scholar
  36. 3.36
    T. Kimura, Y. Tomioka, H. Kuwahara, A. Asamitsu, M. Tamura, and Y. Tokura: Science 274, 1698 (1996)ADSGoogle Scholar
  37. 3.37
    D.N. Argyriou, J.F. Mitchell, P.G. Radaelli, H.N. Bordallo, D.E. Cox, M. Medarde, and J.D. Jorgensen: Phys. Rev. B 59, 8695 (1999)ADSCrossRefGoogle Scholar
  38. 3.38
    T. Kimura, R. Kumai, Y. Tokura, J. Q. Li, and Y. Matsui: Phys. Rev. B 58, 11081 (1998). See also J. Q. Li, Y. Matsui, T. Kimura, and Y. Tokura: Phys. Rev. B 57, R3205 (1998). For studies of the MR effect at high pressure and x = 0.3, see T. Kimura, A. Asamitsu, Y. Tomioka, and Y. Tokura: Phys. Rev. Lett. 79, 3720 (1997)ADSCrossRefGoogle Scholar
  39. 3.39
    C.D. Ling, J.E. Millburn, J.F. Mitchell, D.N. Argyriou, J. Linton, and H.N. Bordallo: Phys. Rev. B 62, 15096 (2000)ADSCrossRefGoogle Scholar
  40. 3.40
    D.N. Argyriou, J.F. Mitchell, J.B. Goodenough, O. Chmaissem, S. Short, and J.D. Jorgensen: Phys. Rev. Lett. 78, 1568 (1997). See also R. Osborn, S. Rosenkranz, D. N. Argyriou, L. Vasiliu-Doloc, J.W. Lynn, S.K. Sinha, J.F. Mitchell, K.E. Gray, and S.D. Bader: Phys. Rev. Lett. 81, 3964 (1998)Google Scholar
  41. 3.41
    K. Hirota, Y. Moritomo, H. Fujioka, M. Kubota, H. Yoshizawa, and Y. Endoh: J. Phys. Soc. J.n. 67, 3380 (1998); M. Kubota, H. Fujioka, K. Hirota, K. Ohoyama, Y. Moritomo, H. Yoshizawa, and Y. Endoh: J. Phys. Soc. Jpn. 69, 1606 (2000). See also comment by P.D. Battle, M.J. Rosseinsky, and P.G. Radaelli: J. Phys. Soc. Jpn. 68, 1462 (1999), and reply by K. Hirota et al.: J. Phys. Soc. Jpn. 68, 1463 (1999)Google Scholar
  42. 3.
    M. Tokunaga, Y. Tokunaga, M. Yasugaki, and T. Tamegai: (Physica B, to be published) found FM AF phase separation at x = 0.45 in bilayer manganites and at x = 0.30 in Lal_yCa,MnO3, with clusters as large as Jim in sizeGoogle Scholar
  43. 3.
    S.H. Chun, Y. Lyanda-Geller, M.B. Salamon, R. Suryanarayanan, G. Dhalenne, and A. Revcolevschi: preprint, cond-mat/0007249Google Scholar
  44. 3.
    Y. Moritomo, Y. Tomioka, A. Asamitsu, Y. Tokura, and Y. Matsui: Phys. Rev. B 51 3297 (1995). References to previous literature using ceramics can be found in this paperGoogle Scholar
  45. 3.45
    W. Bao, C.H. Chen, S.A. Carter, and S-W. Cheong: Solid State Commun. 98, 55 (1996)ADSCrossRefGoogle Scholar
  46. 3.46
    B.J. Sternlieb, J.P. Hill, U.C. Wildgruber, G.M. Luke, B. Nachumi, Y. Moritomo, and Y. Tokura: Phys. Rev. Lett. 76, 2169 (1996)ADSCrossRefGoogle Scholar
  47. 3.47
    Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo, and Y. Tokura: Phys. Rev. Lett. 80, 1932 (1998)ADSCrossRefGoogle Scholar
  48. 3.48
    M. Tokunaga, N. Miura, Y. Moritomo, and Y. Tokura: Phys. Rev. B 59, 11151 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Elbio Dagotto
    • 1
  1. 1.Physics Department and National High Magnetic Field LabFlorida State UniversityTallahasseeUSA

Personalised recommendations