Advertisement

Inhomogeneities in Manganites: The Case of La1−xCaxMnO3

  • J. A. Fernandez-Baca
  • G. Papavassiliou
  • J. J. Neumeier
  • A. L. Cornelius
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 136)

Abstract

The theoretical analysis presented in previous chapters has clearly unveiled a previously unknown feature of simple models for manganites: there is an intrinsic tendency to electronic phase separation. Once the long-range Coulombic interaction is considered, as well as the effect of pinning centers and disorder, the macroscopic phase separation becomes a microscopic inhomogeneous state. Similar ideas have been analyzed before in the context of high-temperature superconductors (see [1.3] and Chap. 1), and it is rapidly becoming a unifying theme in the study of transition-metal oxides, and even in some non-oxide compounds. In this chapter, we describe experimental results for manganites focusing on the issue of inhomogeneities in La1- x Ca x MnO3 (LCMO). The reader will find that the evidence for inhomogeneities in LCMO is simply overwhelming. Figure 11.1, reproduced from Moreo et al. [1.10], shows the phase diagram of LCMO containing words reproduced from the experimental literature, at the temperature and hole density of those experiments. Clearly, in all the phases, including the ferromagnetic metallic one, and even at high temperatures, inhomogeneities have been unveiled. Experimentalists use a variety of names to describe their results, such as “droplets”, “domains”, “clusters”, “polarons”, and others, but they all refer to the same notion: the system is inhomogeneous at small length scales.

Keywords

Nuclear Magnetic Resonance Scanning Tunneling Microscope Nuclear Quadrupole Resonance Nuclear Magnetic Resonance Technique Scanning Tunneling Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 11.1
    E.O. Wollan and C.G. Shull: Phys. Rev. 73, 830 (1948)ADSCrossRefGoogle Scholar
  2. 11.2
    O. Halpern and M.H. Johnson: Phys. Rev. 55, 895 (1939)ADSGoogle Scholar
  3. 11.3
    C.G. Shull, E.O. Wollan and W.A. Strauser: Phys. Rev. 81, 483 (1951)ADSCrossRefGoogle Scholar
  4. 11.4
    L. Néel: Ann. Phys. 3, 137 (1948)Google Scholar
  5. 11.5
    C.G. Shull, W.A. Strauser and E.O. Wollan: Phys. Rev. 83, 333 (1951)ADSCrossRefGoogle Scholar
  6. 11.6
    E.O. Wollan and W.C. Koehler: Phys. Rev. 100, 545 (1955)ADSCrossRefGoogle Scholar
  7. 11.7
    S.W. Lovesey: Theory of Neutron Scattering from Condensed Matter (Oxford University Press, Oxford 1984 )Google Scholar
  8. 11.
    G.L. Squires: Introduction to the Theory of Thermal Neutron Scattering (Cambridge, 1978)Google Scholar
  9. 11.9
    D.L. Price and K. Sköld, in Methods of Experimental Physics, vol. 23 Neutron Scattering, Part A, Chap. 1. K. Sköld and D.L. Price, ( Eds.) (Academic Press, 1986 )Google Scholar
  10. 11.10
    J. Fernandez-Baca et al.: Phys. Rev. Lett. 80, 4012 (1998)ADSCrossRefGoogle Scholar
  11. 11.11
    P. Dai, J.A. Fernandez-Baca, E.W. Plummer, Y. Tomioka and Y. Tokura: Phys. Rev. B 64, 224429 (2001)Google Scholar
  12. 11.12
    J.W. Lynn et al.: Phys. Rev. Lett. 76, 4046 (1996). See also J.W. Lynn et al.: J. Appl. Phys. 81, 5488 (1997)ADSCrossRefGoogle Scholar
  13. 11.
    This peak is unrelated to the static central peak associated with a soft phonon/structural distortion observed in SrTiO3 (see, for instance, R. Wang et al.: Phys. Rev. Lett. 80, 2370 (1998), and references therein). The effect in the latter is extrinsic and sample dependent, while in manganites it is intrinsic. The author thanks J. Lynn and J.A. Fernandez-Baca for conversations on these issuesGoogle Scholar
  14. 11.14
    A.M. Oleg and L.F. Feiner: Phys. Rev. B 65, 052414 (2002)Google Scholar
  15. 11.
    B.I. Halperin and P.C. Hohenberg: Phys. Rev. 188, 898 (1969), and references thereinGoogle Scholar
  16. 11.
    R.S. Fishman: Phys. Rev. B 62, R3600 (2000), and references therein. See also A.L. Chernyshev and R.S. Fishman, cond-mat/0207305.Google Scholar
  17. 11.17
    T.G. Perring, G. Aeppli, S.M. Hayden, S.A. Carter, J.P. Remeika, and S.-W. Cheong: Phys. Rev. Lett. 77, 711 (1996)ADSCrossRefGoogle Scholar
  18. 11.
    N. Furukawa: J. Phys. Soc. Jpn. 65, 1174 (1996). See also D.I. Golosov: cond-mat/9909213, and [11.14]Google Scholar
  19. 11.19
    L. Vasiliu-Doloc, J.W. Lynn, A.H. Moudden, A.M. de Leon-Guevara, and A. Revcolevschi: Phys. Rev. B 58, 14913 (1998)ADSCrossRefGoogle Scholar
  20. 11.20
    M. Martin, G. Shirane, Y. Endoh, K. Hirota, Y. Moritomo, and Y. Tokura: Phys. Rev. B 53, 14285 (1996)ADSCrossRefGoogle Scholar
  21. 11.21
    H.Y. Hwang, P. Dai, S.-W. Cheong, G. Aeppli, D.A. Tennant, and H.A. Mook: Phys. Rev. Lett. 80, 1316 (1998)ADSCrossRefGoogle Scholar
  22. 11.22
    P. Dai, H.Y. Hwang, J. Zhang, J.A. Fernandez-Baca, S.-W. Cheong, C. Kloc, Y. Tomioka, and Y. Tokura: Phys. Rev. B 61, 9553 (2000)ADSCrossRefGoogle Scholar
  23. 11.
    N. Furukawa: J. Phys. Soc. Jpn. 68, 2522 (1999); and cond-mat/9907362Google Scholar
  24. 11.24
    G. Khaliullin and R. Kilian: Phys. Rev. B 61, 3494 (2000)ADSCrossRefGoogle Scholar
  25. 11.25
    D.I. Golosov: Phys. Rev. Lett. 84, 3974 (2000); R. Maezono and N. Nagaosa: Phys. Rev. B 61, 1189 (2000)Google Scholar
  26. 11.26
    T.A. Kaplan and S.D. Mahanti, and Y.-S. Su: Phys. Rev. Lett. 86, 3634 (2001). See also T.A. Kaplan and S.D. Mahanti: J. Phys. Condens. Matter 9, L291 (1997)Google Scholar
  27. 11.
    F. Mancini, N.B. Perkins, and N.M. Plakida: cond-mat/0011464Google Scholar
  28. 11.
    D.M. Edwards: cond-mat/0201558. See also M. Hohenadler and D.M. Edwards: cond-mat/0111175Google Scholar
  29. 11.29
    R. Kajimoto, H. Yoshizawa, H. Kawano-Furukawa, H. Kuwahara, Y. Tomioka, and Y. Tokura: J. Magn. Magn. Mater. 226, 892 (2001)ADSCrossRefGoogle Scholar
  30. 11.
    N. Shannon and A.V. Chubukov: cond-mat/0204049Google Scholar
  31. 11.31
    H. Fujioka, M. Kubota, K. Hirota, H. Yoshizawa, Y. Moritomo, and Y. Endoh: J. Phys. Chem. Solids 60, 1165 (1999); K. Hirota, S. Ishihara, H. Fujioka, M. Kubota, H. Yoshizawa, Y. Moritomo, Y. Endoh, and S. Maekawa: cond-mat/0104535. See also T. Chatterji, L.P. Regnault, P. Thalmeier, R. Suryanarayanan, G. Dhalenne, and A. Revcolevschi: Phys. Rev. B 60, R6965 (1999)ADSGoogle Scholar
  32. 11.32
    H. Yoshizawa, H. Kawano, J.A. Fernandez-Baca, H. Kuwahara, and Y. Tokura: Phys. Rev. B 58, R571 (1998)ADSCrossRefGoogle Scholar
  33. 11.33
    M.R. Ibarra et al.: Phys. Rev. Lett. 75, 3541 (1995)ADSCrossRefGoogle Scholar
  34. 11.34
    M.R. Ibarra et al.: Phys. Rev. B 57, 7446 (1998)ADSCrossRefGoogle Scholar
  35. 11.35
    J.M. De Teresa et al.: Phys. Rev. B 54, R12689 (1996)ADSCrossRefGoogle Scholar
  36. 11.36
    J.M. De Teresa et al.: Phys. Rev. B 56, 3317 (1997)ADSCrossRefGoogle Scholar
  37. 11.37
    See Fig. 8 of J. Blasco et al.: J. Phys. Condens. Matter 8, 7427 (1996)ADSCrossRefGoogle Scholar
  38. 11.38
    C. Kapusta, P.C. Riedi, W. Kocemba, G. Tomka, M.R. Ibarra, J.M. De Teresa, M.,Viret, and J.M.D. Coey: J. Phys. Condens. Matter 11, 4079 (1999)ADSCrossRefGoogle Scholar
  39. 11.39
    J.M. De Teresa et al.: Nature 386, 256 (1997)ADSCrossRefGoogle Scholar
  40. 11.
    C.A. Ramos et al.: contribution to the ICM 2000 conference, Recife, BrazilGoogle Scholar
  41. 11.41
    M. Uehara, S. Mori, C.H. C.en, and S.-W. Cheong: Nature 399, 560 (1999)Google Scholar
  42. 11.42
    C.H. Chen, S. Mori, and S.-W. Cheong: Phys. Rev. Lett. 83, 4792 (1999). See also C.H. Chen and S.W. Cheong: Phys. Rev. Lett. 76, 4042 (1996); P.G. Radaelli, D.E. Cox, M. Marezio, and S.-W. Cheong: Phys. Rev. B 55, 3015 (1997)Google Scholar
  43. 11.43
    V. Kiryukhin et al.: Phys. Rev. B 63, 024420 (2001). Results for Ndi_xSrzMnO3 at x = 0.5 can be found in V. Kiryukhin et al.: Phys. Rev. B 63, 144406 (2001)Google Scholar
  44. 11.44
    K.H. Kim, M. Uehara, C. Hess, P.A. Sharma, and S.-W. Cheong: Phys. Rev. Lett. 84, 2961 (2000)ADSCrossRefGoogle Scholar
  45. 11.45
    M. Fäth, S. Freisem, A.A. Menovsky, Y. Tomioka, J. Aarts, and J.A. Mydosh: Science 285, 1540 (1999)CrossRefGoogle Scholar
  46. 11.46
    A. Biswas, S. Elizabeth, A.K. Raychaudhuri, and H.L. Bhat: Phys. Rev. B 59, 5368 (1999)ADSCrossRefGoogle Scholar
  47. 11.
    V.N. Smolyaninova et al.: cond-mat/9903238Google Scholar
  48. 11.48
    M. Bibes, L. Balcells, S. Valencia, J. Fontcuberta, M. Wojcik, E. Jedryka, and S. Nadolski: Phys. Rev. Lett. 87, 067210 (2001)Google Scholar
  49. 11.49
    C. Renner, G. Aeppli, B.-G. Kim, Y.-A. Soh, and S.-W. Cheong: Nature 416, 518 (2002)ADSCrossRefGoogle Scholar
  50. 11.50
    S.J. Billinge et al.: cond-mat/9907329. See also S.J. Billinge et al.: Phys. Rev. Lett. 77, 715 (1996)ADSGoogle Scholar
  51. 11.51
    G. Biotteau, M. Hennion, F. Moussa, J. Rodriguez-Carvajal, L. Pinsard, A. Revcolevschi, Y.M. Mukovskii, and D. Shulyatev: Phys. Rev. B 64, 104421 (2001)Google Scholar
  52. 11.52
    C.H. Booth et al.: Phys. Rev. Lett. 80, 853 (1998). See also C.H. Booth et al.: Phys. Rev. B 57, 10440 (1998)CrossRefGoogle Scholar
  53. 11.
    M. Hennion, F. Moussa, G. Biotteau, J. Rodriguez-Carvajal, L. Pinsard, and A. Revcolevschi: Phys. Rev. Lett. 81 1957 (1998), and references therein. See also F. Moussa et al.: Phys. Rev. B 60 12299 (1999); and [11.51]Google Scholar
  54. 11.
    M. Hennion et al.: cond-mat/991036Google Scholar
  55. 11.55
    G. Allodi, R. De Renzi, and G. Guidi: Phys. Rev. B 56, 6036 (1997). See also G. Allodi et al.: Phys. Rev. B 57, 1024 (1998)CrossRefGoogle Scholar
  56. 11.56
    G. Papavassiliou, M. Fardis, M. Belesi, T.G. Maris, G. Kallias, M. Pissas, D. Niarchos, C. Dimitropoulos, and J. Dolinsek: Phys. Rev. Lett. 84, 761 (2000)ADSCrossRefGoogle Scholar
  57. 11.57
    C. Kapusta, P.C. Riedi, M. Sikora, and M.R. Ibarra: Phys. Rev. Lett. 84, 4216 (2000). See also C. Kapusta et al.: J. Appl. Phys. 87, 7121 (2000)ADSCrossRefGoogle Scholar
  58. 11.
    J. Dho, I. Kim, and S. Lee: Phys. Rev. B 60 14545 (1999); and references thereinGoogle Scholar
  59. 11.
    S. Mori, C.H. Chen, and S.-W. Cheong: Phys. Rev. Lett. 81 3972 (1998), and references thereinGoogle Scholar
  60. 11.60
    A. Simopoulos, G. Kallias, E. Devlin, and M. Pissas: Phys. Rev. B 63, 054403 (2001). See also G. Kailias, M. Pissas, E. Devlin, A. Simopoulos, and D. Niarchos: Phys. Rev. B 59, 1272 (1999)Google Scholar
  61. 11.
    F. Rivadulla, M. Freita-Alvite, M.A. Lopez-Quintela, L.E. Hueso, D.R. Miguens, P. Sande, and J. Rivas: cond-mat/0105088Google Scholar
  62. 11.62
    G. Papavassiliou et al.: Phys. Rev. B 59, 6390 (1999). See also M. Belesi et al.: cond-mat/0004332; G. Allodi, R. De Renzi, F. Licci, and M.W. Pieper: Phys. Rev. Lett. 81, 4736 (1998)CrossRefGoogle Scholar
  63. 11.63
    A. Yakubovskii, K. Kumagai, Y. Furukawa, N. Babushkina, A. Taldenkov, A. Kaul, and O. Gorbenko: Phys. Rev. B 62, 5337 (2000)ADSCrossRefGoogle Scholar
  64. 11.64
    F.C. Chou, F. Borsa, J.H. Cho, D.C. Johnston, A. Lascialfari, D.R. Torgeson, and J. Ziolo: Phys. Rev. Lett. 71, 2323 (1993)ADSCrossRefGoogle Scholar
  65. 11.65
    M.-H. Julien, F. Borsa, P. Carretta, M. Horvatic, C. Berthier, and C.T. Lin: Phys. Rev. Lett. 83, 604 (1999)ADSCrossRefGoogle Scholar
  66. 11.66
    A. Moreo, S. Yunoki, E. Dagotto: Science 283, 2034 (1999)Google Scholar
  67. 11.67
    M. Belesi, G. Papavassiliou, M. Fardis, M. Pissas, J.E. Wegrowe, and C. Dimitropoulos: Phys. Rev. B 63, 180406R (2001)Google Scholar
  68. 11.68
    G. Papavassiliou, M. Belesi, M. Fardis, and C. Dimitropoulos: Phys. Rev. Lett. 87, 177204 (2001)Google Scholar
  69. 11.69
    A.W. Hunt, P.M. Singer, K.R. Thurber, and T. Imai: Phys. Rev. Lett. 82, 4300 (1999)ADSCrossRefGoogle Scholar
  70. 11.70
    N.J. Curro, B.J. Suh, P.C. Hammel, M. Huecker, B. Buechner, U Ammerahl, and A. Revcolevschi: Phys. Rev. Lett. 85, 642 (2000)ADSCrossRefGoogle Scholar
  71. 11.71
    M.-H. Julien, A. Campana, A. Rigammonti, P. Carretta, F. Borsa, P. Kuhns, A.P. Reyes, W.G. Moulton, M. Horvatic, C. Berthier: Phys. Rev. B 63, 144508 (2001)Google Scholar
  72. 11.72
    G. Allodi, M. Cestelli Guidi, R. de Renzi, A. Caneiro, L. Pinsard: Phys. Rev. Lett. 87, 127206 (2001)Google Scholar
  73. 11.73
    N. Bloembergen, T.J. Rowaland: Acta Met. 1, 731 (1953)CrossRefGoogle Scholar
  74. 11.74
    C.P. Slichter: Principles of Magnetic Resonance (Springer, Berlin Heidelberg New York 1992). See also L.C. Hebel and C.P. Slichter: Phys. Rev. 113, 1504 (1959)CrossRefGoogle Scholar
  75. 11.75
    C.H. Pennington, D.J. Durand, C.P. Slichter, J.P. Rice, E.D. Bukowski, and D.M. Ginsberg: Phys. Rev. B 39, 274 (1989)ADSCrossRefGoogle Scholar
  76. 11.76
    P.M. Singer, A.W. Hunt, A.F. Cederstrom, and T. Imai: Phys. Rev. B 60, 15345 (1999)ADSCrossRefGoogle Scholar
  77. 11.77
    G.B. Teitel’baum, I.M. Abu-Shiekah, O. Bakharev, H.B. Brom, J. Zaanen: Phys. Rev. B 63, 020507 (R) (2000)Google Scholar
  78. 11.78
    J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, E. Dagotto: Phys. Rev. Lett. 87, 277202 (2001)Google Scholar
  79. 11.
    For a review of NMR applied to high-Tc superconductors, see A. Rigamonti, F. Borsa, and P. Carretta: Rep. Prog. Phys. 61, 1367 (1998)Google Scholar
  80. 11.
    C.H. Pennington and C.P. Slichter: Nuclear Resonance Studies of YBa2 Cu3 07_5,Chap. 5 of Physical Properties of High Temperature Superconductors II,(Ed.) D.M. Ginsberg.Google Scholar
  81. 11.81
    C.P. Poole, Jr., H.A. Farach, and R.J. Creswick: Superconductivity (Academic Press, 1995 )Google Scholar
  82. 11.82
    A. Barnabe et al.: Appl. Phys. Lett. 71, 3907 (1997); B. Raveau et al.: J. Solid State Chem. 130, 162 (1997)CrossRefGoogle Scholar
  83. 11.
    G. Martins, M. Laukamp, J. Riera and E. Dagotto: Phys. Rev. Lett. 78, 3563 (1997); and references thereinGoogle Scholar
  84. 11.84
    T. Kimura et al.: Phys. Rev. Lett. 83, 3940 (1999)ADSCrossRefGoogle Scholar
  85. 11.85
    For a review see L.E. Cross: Ferroelectrics 76, 241 (1987)CrossRefGoogle Scholar
  86. 11.86
    G. Burns and B.A. Scott: Solid State Commun. 13, 423 (1973)ADSCrossRefGoogle Scholar
  87. 11.
    E.V. Colla et al.: Phys. Rev. Lett. 85, 3033 (2000), and references therein. For recent related work on nanometer-size domains in relaxor ferroelectrics, see P.M. Gehring, S.E. Park and G. Shirane: cond-mat/0011090. Diffuse scattering around Bragg points has been studied in these compounds, similarly as in manganites. See for example: D. La-Orauttapong et al.: condmat/0106051; K. Hirota et al.: cond-mat/0109386; S B Vakhrushev and S.M. Shapiro: cond-mat/0203103Google Scholar
  88. 11.88
    H. Oshima, M. Nakamura, and K. Miyano: Phys. Rev. B 63, 075111 (2001)Google Scholar
  89. 11.89
    H. Oshima et al.: Phys. Rev. B 63, 094420 (2001)Google Scholar
  90. 11.90
    Y. Moritomo, A. Machida, S. Mori, N. Yamamoto, and A. Nakamura: Phys. Rev. B 60, 9220 (1999). See also Y. Moritomo: Phys. Rev. B 60, 10374 (1999)ADSGoogle Scholar
  91. 11.91
    K. Takenaka, S. Okuyama, R. Shiozaki, T. Fujita, and S. Sugai: J. Appl. Phys. 91, 2994 (2002)ADSCrossRefGoogle Scholar
  92. 11.
    T. Katsufuji et al.: preprintGoogle Scholar
  93. 11.93
    S.B. Ogale et al.: Phys. Rev. B 57, 7841 (1998)ADSCrossRefGoogle Scholar
  94. 11.
    M. Hervieu et al.: cond-mat/0010427. See also B. Raveau, A. Maignan, C. Martin, and M. Hervieu: The important role of crystal chemistry upon the CMR properties of manganites,contribution to [1.21], p. 43Google Scholar
  95. 11.
    R.D. Merithew, M.B. Weissman, F.M. Hess, P. Spradling, E.R. Nowak, J. O’Donnell, J.N. Eckstein, Y. Tokura and Y. Tomioka: Phys. Rev. Lett. 84, 3442 (2000); and references thereinGoogle Scholar
  96. 11.96
    B. Raquet, A. Anane, S. Wirth, P. Xiong, and S. von Molnar: Phys. Rev. Lett. 84, 4485 (2000); and references therein. For a comment and reply on this paper see M. Weissman: Phys. Rev. Lett. 86, 1390 (2001) and A. Anane and S. von Molnar: Phys. Rev. Lett. 86, 1391 (2001)Google Scholar
  97. 11.97
    A. Anane, B. Raquet, S. von Molnar, L. Pinsard-Godart, and A. Revcolevschi: J. Appl. Phys. 87, 5025 (2000)ADSCrossRefGoogle Scholar
  98. 11.98
    V. Podzorov, M. Uehara, M.E. Gershenson, T.Y. Koo, and S.-W. Cheong: Phys. Rev. B 61, R3784 (2000). See also V. Podzorov, M.E. Gershenson, M. Uehara, and S.-W. Cheong: Phys. Rev. B 64, 115113 (2001); and V. Podzorov, C.H. Chen, M.E. Gershenson, and S.-W. Cheong: Europhys. Lett. 55, 411 (2001)Google Scholar
  99. 11.
    E. Colla, L. Chao, and M. Weissman: cond-mat/0109485, and references thereinGoogle Scholar
  100. 11.100
    A. Rakhmanov, K.I. Kugel, Y.M. Blanter, and M.Y. Kagan: Phys. Rev. B 63, 174424 (2001)Google Scholar
  101. 11.101
    N. Kida et al.: Phys. Rev. B 62, R11965 (2000). See also N. Kida et al.: cond-mat/0106129; N. Kida and M. Tonouchi: Appl. Phys. Lett. 78, 4115 (2001)ADSCrossRefGoogle Scholar
  102. 11.
    J.-S. Zhou and J.B. Goodenough: Phys. Rev. Lett. 80 2665 (1998), and references thereinGoogle Scholar
  103. 11.103
    R.H. Heffner et al.: cond-mat/9910064, and references therein. See also R.H. Heffner et al.: Phys. R.v. B 63, 094408 (2001)Google Scholar
  104. 11.
    S.H. Chun et al.: cond-mat/9906198. See also M. Jaime et al.: Phys. Rev. B 54 11914 (1996); M. Jaime et al.: Appl. Phys. Lett. 68 1576 (1996); M. Jaime et al.: Phys. Rev. Lett. 78 951 (1997); M. Jaime, P. Lin, S.H. Chun, and M.B. Salamon: Phys. Rev. B 60 1028 (1999), and references thereinGoogle Scholar
  105. 11.105
    Y. Hirai et al.: Univ. of Wisconsin, Madison, preprint, May 9, 2000Google Scholar
  106. 11.106
    T. Wu, S.B. Ogale, J.E. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R.L. Greene, R. Ramesh, and T. Venkatesan: Phys. Rev. Lett. 86, 5998 (2001)ADSCrossRefGoogle Scholar
  107. 11.
    N.E. Massa, H. Tolentino, H. Salva, J.A. Alonso, M.J. Martinez-Lopez, and M.T. Casais: preprintGoogle Scholar
  108. 11.108
    R. Przenioslo, I. Sosnowska, E. Suard, A. Hewat, and A.N. Fitch, J. Phys. Condens. Matt. 14, 5747 (2002)ADSCrossRefGoogle Scholar
  109. 11.109
    A. Maignan, C. Martin, F. Damay, B. Raveau, and J. Hejtmanek: Phys. Rev. B 58, 2758 (1998)ADSCrossRefGoogle Scholar
  110. 11.
    J.J. Neumeier and J.L. Cohn: Phys. Rev. B 61 14319 (2000), and references therein. See also J.L. Cohn and J.J. Neumeier, cond-mat/0208050.Google Scholar
  111. 11.
    R. Mahendiran et al.: cond-mat/0010384 and cond-mat/0106164. In this reference, the random field Ising model was used to explain the results, similarly as previously done by A. Moreo et al.: Phys. Rev. Lett. 84 5568 (2000), based on theoretical considerationsGoogle Scholar
  112. 11.
    Recent results by J. Burgy, E. Dagotto, and M. Mayr, cond-mat/0207560, preprint (2002), suggest that some percolative transitions can be of first order. Correlated disorder and other forms of percolation are studied in the reference mentioned above.Google Scholar
  113. 11.113
    C. Martin, A. Maignan, M. Herview, and B. Raveau: Phys. Rev. B 60, 12191 (1999)ADSCrossRefGoogle Scholar
  114. 11.114
    P.A. Algarabel et al.: Phys. Rev. B 65, 104437 (2002)Google Scholar
  115. 11.
    H. Aliaga, M.T. Causa, H. Salva, M. Tovar, A. Butera, B. Alascio, D. Vega, G. Polla, G. Leyva, and P. Konig: cond-mat/0010295Google Scholar
  116. 11.
    Y.-R. Chen and P.B. Allen: cond-mat/0101354Google Scholar
  117. 11.117
    W. Bao, J.D. Axe, C.H. Chen, and S.-W. Cheong: Phys. Rev. Lett. 78, 543 (1997)ADSCrossRefGoogle Scholar
  118. 11.
    V. Podzorov, B.G. Kim, V. Kiryukhin, M.E. Gershenson, and S.-W. Cheong: Phys. Rev. B 64 140406 (2001), and references thereinGoogle Scholar
  119. 11.119
    H.L. Liu et al.: Phys. Rev. Lett. 81, 4684 (1998)ADSCrossRefGoogle Scholar
  120. 11.120
    M.M. Savosta et al.: Phys. Rev. B 62, 9532 (2000). See also C. Martin et al.: Phys. Rev. B 62, 6442 (2000)CrossRefGoogle Scholar
  121. 11.121
    S. Yoon, M. Rubhausen, S.L. Cooper, K.H. Kim and S.-W. Cheong: Phys. Rev. Lett. 85, 3297 (2000)ADSCrossRefGoogle Scholar
  122. 11.122
    B.F. Woodfield, M.L. Wilson, and J.M. Byers: Phys. Rev. Lett. 78, 3201 (1997)ADSCrossRefGoogle Scholar
  123. 11.
    A.L. Cornelius, B. Light, and J.J. Neumeier: submitted to Phys. Rev. B (cond-mat/0108239)Google Scholar
  124. 11.124
    W.A. Philips: J. Low Temp. Phys. 7, 351 (1972)ADSCrossRefGoogle Scholar
  125. 11.125
    V.N. Smolyaninova, A. Biswas, X. Zhang, K.H. Kim, B.-G. Kim, S.-W. Cheong, and R.L. Greene: Phys. Rev. B 62, R6093 (2000)ADSCrossRefGoogle Scholar
  126. 11.
    M.F. Hundley and J.J. Neumeier: Phys. Rev. B 55, 11511 (1997); M.F. Hundley: private communicationGoogle Scholar
  127. 11.127
    L. Ghivelder, I.A. Castillo, M.A. Gusmâo, J.A. Alonso, and L.F. Cohen: Phys. Rev. B 60, 12184 (1999)ADSCrossRefGoogle Scholar
  128. 11.128
    H. Kopferman: Nuclear Moments ( Academic Press, New York 1958 )Google Scholar
  129. 11.129
    C. Kittel and H. Kroemer: Thermal Physics ( Freeman, New York 1980 ) p. 63Google Scholar
  130. 11.130
    M.R. Lees, O.A. Petrenko, G. Balakrishnan, and D.M. Paul: Phys. Rev. B 59, 1298 (1999)ADSCrossRefGoogle Scholar
  131. 11.131
    C. Kittel: Quantum Theory of Solids (Wiley, New York 1987 ) p.55; E.S.R. Gopal: Specific Heat at Low Temperatures ( Plenum, New York 1966 )Google Scholar
  132. 11.132
    C.D. Ling, J.J. Neumeier, E. Granado, J.W. Lynn, D.N. Argyriou, and P.L. Lee: submitted to Phys. Rev. BGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. A. Fernandez-Baca
  • G. Papavassiliou
  • J. J. Neumeier
  • A. L. Cornelius

There are no affiliations available

Personalised recommendations