Densitometry in Clinical Practice

  • S. Grampp
Part of the Medical Radiology book series (MEDRAD)


The focus of radiological efforts in osteoporosis are early diagnosis and accurate prediction of treatment outcome. The most commonly used methods are dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), which together with conventional radiographs constitute the basic diagnostic modalities. All of these have been described in detail in previous chapters. Data acquired from an individual patient are generally compared to data from an age-, sex-, and ethnicity-matched control population. The bone mass measurement predicts a patient’s future risk of fracture, and osteoporosis can be diagnosed even in the absence of a history of fracture. Which measurement sites are most appropriate for the purpose may vary depending on the specific characteristics of the individual patient. The basic and supplementary techniques employed in any given clinical case should be based on knowledge of their strengths and limitations.


Bone Mineral Density Lumbar Spine Bone Mass Fracture Risk Anorexia Nervosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JE (1997) Single and dual x-ray absorptiometry. Eur Radiol 7: 20–31PubMedCrossRefGoogle Scholar
  2. Alffram P (1964) An epidemiological study of cervical and trochanteric fractures of the femur in an urban population. Acta Orthop Scand [Suppl] 65: 1–114Google Scholar
  3. Ashman RB, Rho JY (1988) Elastic modulus of trabecular bone material. J Biomech 21: 177–181PubMedCrossRefGoogle Scholar
  4. Boyce WJ, Vessey MP (1985) Rising incidence of fracture of the proximal femur. Lancet 175: 150–151CrossRefGoogle Scholar
  5. Ceder L, Elmquist D, Svensson SE (1981) Cardiovascular and neurologic function in elderly patients sustaining a fracture of the neck or the femur. J Bone Joint Surg (Br) 63B: 560–566Google Scholar
  6. Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA (1990) The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 23: 1103–1113PubMedCrossRefGoogle Scholar
  7. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley JGoogle Scholar
  8. Ensrud K et al (1993) Bone density at various sites for prediction of hip fractures: the study of osteoporotic fractures. Lancet 341: 72–75PubMedCrossRefGoogle Scholar
  9. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox K, Ensrud K, et al (1995) Risk factors for hip fractures in white women. N Engl J Med 332: 767–773PubMedCrossRefGoogle Scholar
  10. Frost HM (1964) Dynamics of bone remodelling. In: Frost H (ed) Bone biodynamics. Little Brown, Boston, pp 315–334Google Scholar
  11. Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST et al (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11: 707–730PubMedCrossRefGoogle Scholar
  12. Gluer CC (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The international quantitative ultrasound consensus group. J Bone Miner Res 12: 1280–1288PubMedCrossRefGoogle Scholar
  13. Gluer CC, Blunt B, Engelke K, Jergas M, Grampp S, Genant HK (1994) “Characteristic follow-up time” - a new concept for standardized characterization of a technique’s ability to monitor longitudinal changes. Bone Miner 25 [Suppl 2]:S40Google Scholar
  14. Gluer CC, Cummings SR, Bauer DC, Stone K, Pressman A, Mathur A et al (1996) Osteoporosis: association of recent fractures with quantitative US findings. Radiology 199: 725–732PubMedGoogle Scholar
  15. Gordon CM (2000) Bone density issues in the adolescent gyne- cology patient. J Pediatr Adolesc Gynecol 13: 157–161PubMedCrossRefGoogle Scholar
  16. Grampp S, Lang P, Jergas M, Gluer CC, Mathur A, Engelke K, Genant HK (1995) Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: short-term precision in-vivo and comparison to dual x-ray absorptiometry. J Bone Miner Res 10: 1566–1576PubMedCrossRefGoogle Scholar
  17. Grampp S, Jergas M, Lang P, Steiner E. Fuerst T, Gluer CC, Genant HK (1996) Quantitative CT assessment of the lumbar spine and radius in patients with osteoporosis. Am J Roentgenol 167: 133–140Google Scholar
  18. Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M et al (1997a) Comparisons of non-invasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12: 697–711PubMedCrossRefGoogle Scholar
  19. Grampp S, Steiner E, Imhof H (1997b) Radiological diagnosis of osteoporosis. Eur Radiol 7: 11–19PubMedCrossRefGoogle Scholar
  20. Grampp S, Dobnig H, Willvonseder R (1999a) Empfehlung zur klinischen Anwendung und Relevanz der densitometrischen Verfahren. J Mineralstoffwechsel 6: 19–21Google Scholar
  21. Grampp S, Henk CB, Fuerst TP, Lu Y, Bader TR, Kainberger F., Imhof H (1999b) Diagnostic agreement of quantitative ultrasound of the calcaneus with dual x-ray absorptiometry of the spine and femur. Am J Roentgenol 173: 329–334CrossRefGoogle Scholar
  22. Grampp S, Dobnig H, Willvonseder R, Leb G (2001a) Leitlinien zur Anwendung densitometrischer Verfahren. J Mineralstoffwechsel 8: 50–51Google Scholar
  23. Grampp S, Henk CB, Lu Y, Krestan C, Resch H, Kainberger, Yousseffzadeh S, Imhof H (2001b) Cut-off levels for quantitative ultrasound of the calcaneus in the distinction of healthy and osteoporotic individuals. Radiology 220: 400–405PubMedGoogle Scholar
  24. Greenfield MA, Craven JD, Wishko DS, Huddleston AL, Friedman R, Stern R (1975) The modulus of elasticity of human cortical bone: an in-vivo measurement and its clinical implications. Radiology 115: 163–166PubMedGoogle Scholar
  25. Guglielmi G, Grimston SK, Fischer KC, Pacifici R (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology 192: 845–850PubMedGoogle Scholar
  26. Guglielmi G, Glüer CC, Majumdar S, Blunt BA, Genant HK (1995) Current methods and advances in bone densitometry. Eur Radiol 5: 129–139PubMedCrossRefGoogle Scholar
  27. Guglielmi G, Cammisa M, De Serio A, Scillitani A, Chiodini I, Carnevale V et al (1999) Phalangeal US velocity discriminates between normal and vertebrally fractured subjects. Eur Radiol 9: 1632–1637PubMedCrossRefGoogle Scholar
  28. Guglielmi G, Schneider P, Lang TF, Giannatempo GM, Cammisa M, Genant HK (1997) Quantitative computed tomography at the axial and peripheral skeleton. Eur Radiol 7: 32–42PubMedCrossRefGoogle Scholar
  29. Harke HT (1999) Pediatric bone densitometry: technical issues. Semin Muskuloskel Radiol 3: 371–378CrossRefGoogle Scholar
  30. Herd RJM, Blake G.M, Parker JC, Ryan PJ, Fogelman I (1993) Total body studies in normal British women using dual energy x-ray absorptiometry. Br J Radiol 66: 303–308PubMedCrossRefGoogle Scholar
  31. Hui SL, Slemenda CW, Johnston CC (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81: 1804–1809PubMedCrossRefGoogle Scholar
  32. Ito M, Hayashi K, Yamada M, Uetani M, Nakamura T (1993) Relationship of osteophytes to bone mineral density and spinal fracture in men. Radiology 189: 497–502PubMedGoogle Scholar
  33. Jergas M, Breitenseher M, Glüer CC, Yu W, Genant HK (1995a) Estimates of volmetric bone density from projectional measurements improve the discriminatory capability of dual x-ray absorptiometry. J Bone Miner Res 10: 1101–1110PubMedCrossRefGoogle Scholar
  34. Jergas MD, Majumdar S, Keyak JH, Lee IY, Newitt DC, Grampp S et al (1995b) Relationships between Young modulus of elasticity, ash density, and MRI derived effective transverse relaxation T2* in tibial specimens. J Comput Assist Tomogr 19: 472–479PubMedCrossRefGoogle Scholar
  35. Jones CD, Laval-Jeantet AM, Laval-Jeantet MH, Genant HK (1987) Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis. Bone 8: 201–206PubMedCrossRefGoogle Scholar
  36. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4: 368–381PubMedCrossRefGoogle Scholar
  37. Krestan C, Grampp S, Resch-Holeczke A, Henk CB, Imhof H, Resch H (2001) Diagnostic agreement of imaging ultrasonometry of the calcaneus with dual-energy x-ray absorptiometry of the spine and femur. Am J Roentgenol 177: 213–216CrossRefGoogle Scholar
  38. Lindsay R, Tohme JF (1990) Estrogen treatment of patients with established postmenopausal osteoporosis. Obstet Gynecol 76: 290–295PubMedGoogle Scholar
  39. Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lane N, Genant HK (1998) Proximal femur: assessment for osteoporosis with T2* decay characteristics at MR imaging. Radiology 209: 531–536PubMedGoogle Scholar
  40. Link TM, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof H, Glüer CC, Adams J (1999) Imaging of trabecular bone structure in osteoporosis. Eur Radiol 9: 1781–1788PubMedCrossRefGoogle Scholar
  41. Mazess RB, Barden H, Ettinger M, Schultz E (1988) Bone density of the radius, spine, and proximal femur in osteoporosis. J Bone Miner Res 3: 13–18PubMedCrossRefGoogle Scholar
  42. Melton LJ III, Chrischilles EA, Cooper C, Lane AW, Riggs BL (1992) Perspective. How many women have osteoporosis? J Bone Miner Res 7: 1005–1010PubMedCrossRefGoogle Scholar
  43. Miller PD, Bonnick SL, Rosen CJ (1996) Consensus of an international panel on the clinical utility of bone mass measurements in the detection of low bone mass in the adult population. Calcif Tissue Int 58: 207–214PubMedGoogle Scholar
  44. Pacifici R, Rupich R. Griffin M, Chines A, Susman N, Avioli LV (1990) Dual energy radiography versus quantitative computer tomography for the diagnosis of osteoporosis. J Clin Endocrinol Metab 70: 705–710Google Scholar
  45. Rand T, Schneider B, Grampp S, Wunderbaldinger P, Migits H, Imhof H (1997) Influence of osteophytic size on bone mineral density measured with dual x-ray absorptiometry. Acta Radiol 37: 210–213Google Scholar
  46. Reinbold W, Genant HK, Reiser U, Harris S, Ettinger B (1986) Bone mineral content in early-postmenopausal and postmenopausal osteoporotic women: comparison of measurement method. Radiology 160: 469–478PubMedGoogle Scholar
  47. Resch H, Pietschmann P, Bernecker P, Krexner E, Willvonseder R (1990) Broadband ultrasound attenuation: a new diagnostic method in osteoporosis. Am J Radiol 155: 825–828Google Scholar
  48. Resch H, Nwerkla S, Grampp S, Resch A, Zapf S, Piringer S (2000) Ultrasound and x-ray based bone densitometry in patients with anorexia nervosa. Calcif Tissue Int 66: 338–341PubMedCrossRefGoogle Scholar
  49. Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Preexisting fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114: 919–923PubMedCrossRefGoogle Scholar
  50. Ross PD, Genant HK, Davis JW, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3: 120–126PubMedCrossRefGoogle Scholar
  51. Seeley DG, Browner WS, Cummings SR, Genant HK (1990) Which fractures are associated with low appendicular bone mass in elderly women? Ann Intern Med 115: 128Google Scholar
  52. Seeman E, Karlsson MK, Duan Y (2000) On exposure to anorexia nervosa, the temporal variation in axial and appendicular skeletal development predisposes to site specific deficits in bone size and density: a cross sectional study. J Bone Miner Res 15: 2259–2265PubMedCrossRefGoogle Scholar
  53. Smyth PP, Taylor CJ, Adams JE (1999) Vertebral shape: automatic measurement with active shape models. Radiology 211: 571–578PubMedGoogle Scholar
  54. Steiger P, Cummings SR, Black DM, Spencer NE, Genant HK (1992) Age-related decrements in bone mineral density in women over 65. J Bone Miner Res 7: 625–632PubMedCrossRefGoogle Scholar
  55. Thomas TG, Steven RS (1974) Social effects of fractures of the neck of the femur. Br Med J 3: 456–458PubMedCrossRefGoogle Scholar
  56. Van Berkum FN, Birkenhäger JC, Van Veen LC, Zeelenberg J, Birkenhäger-Frenkel DH, Trouerbach WT (1989) Noninvasive axial and peripheral assessment of bone mineral content: a comparison between osteoporotic women and normal subjects. J Bone Miner Res 4: 679–685PubMedCrossRefGoogle Scholar
  57. Verhej LF, Blokland JA, Papapoulos SE, Zwinderman AH, Pauwels EKJ (1992) Optimization of follow-up measurements of bone mass. J Nucl Med 33: 1406–1410Google Scholar
  58. Wallace W (1983) The increasing incidence of fractures of the proximal femur: an orthopedic epidemic. Lancet 2: 1413–1414CrossRefGoogle Scholar
  59. Watts NB, Harris ST, Genant HK, Wasnich RD, Miller PD, Jackson RD (1990) Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 323: 73–79PubMedCrossRefGoogle Scholar
  60. Yu W, Glider CC, Grampp S, Jergas M, Fuerst T, Wu CY, Genant HK (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual x-ray absorptiometry and quantitative computed tomography. Osteoporosis Int 5: 433–439CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • S. Grampp
    • 1
  1. 1.Abteilung für Osteologie, Allgemeines KrankenhausUniversitätsklinik für RadiodiagnostikViennaAustria

Personalised recommendations