Advertisement

Quantitative Ultrasound

  • R. Barkmann
  • C.-C. Glüer
Part of the Medical Radiology book series (MEDRAD)

Abstract

Measurement methods using ultrasound waves have been successfully employed in materials testing as well as medical diagnosis for a long time. Unlike medical ultrasonography, quantitative ultrasound (QUS) methods are not primarily used to obtain images from the inner human body but to measure quantitative parameters by which to assess tissue properties. In recent years interest in methods of QUS for the assessment of bone properties has increased and many devices are now in use in clinical practice. QUS devices are less expensive and smaller than axial dual-energy X-ray absorptiometry (DXA) or quantitative computed tomography (QCT) devices and do not require the use of ionising radiation. These advantages explain the motivation for using QUS devices for the assessment of osteoporosis, assuming that performance is comparable. However, QUS is not just a cheap surrogate for measurement of bone mineral density (BMD). Ultrasound propagation is complex and affected by other properties of materials, as X-rays are. Ultrasound waves are affected not only by the amount of material but also by its elasticity and structure. For this reason, QUS might be able to yield additional information about bone fragility.

Keywords

Fracture Risk Quantitative Compute Tomography Quantitative Ultrasound Ultrasound Wave Medullary Canal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkmann R, Gluer C (1999) Error sources in quantitative ultrasound measurement. In: Njeh CF, Hans D, Fuerst T, Gluer CC, Genant HK (eds) Quantitative ultrasound: assessment of osteoporosis and bone status. Dunitz, London, pp 101–108Google Scholar
  2. Barkmann R, Heller M, Gluer C (1999) Methoden der in vivo-Ultraschallmesstechnik am Skelett: Grundlagen und technische Realisierung. J Miner Stoffwechs 6: 22–27Google Scholar
  3. Barkmann R, Kantorovich E, Heller M et al (2000a) A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. J Clin Densitometry 3: 1–7CrossRefGoogle Scholar
  4. Barkmann R, Lusse S, Stampa B et al (2000b) Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo. Osteoporos Int 11: 745–755PubMedCrossRefGoogle Scholar
  5. Barkmann R, Scheffzyk R, Timm W et al (2000c) Extended measurement procedures of transverse quantitative ultrasound techniques for an improved assessment of cortical structure of the phalanges. Osteoporos Int 11: 55CrossRefGoogle Scholar
  6. Barkmann R, Rohrschneider W, Vierling M et al (2002) German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int 13: 55–61PubMedCrossRefGoogle Scholar
  7. Baroncelli GI, Federico G, Bertelloni S et al (2001) Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr Res 49: 713–718PubMedCrossRefGoogle Scholar
  8. Bauer DC, Glüer CC, Cauley JA et al (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women: a prospective study. Arch Intern Med 157: 629–634PubMedCrossRefGoogle Scholar
  9. Chappard C, Laugier P, Fournier B et al (1997) Assessment of the relationship between broadband ultrasound attenuation and bone mineral density at the calcaneus using BUA imaging and DXA. Osteoporos Int 7: 316–322PubMedCrossRefGoogle Scholar
  10. Evans JA, Tavakoli MB (1990) Ultrasonic attenuation and velocity in bone. Phys Med Biol 35: 1387–1396PubMedCrossRefGoogle Scholar
  11. Glüer CC (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 12: 1280–1288PubMedCrossRefGoogle Scholar
  12. Gonnelli S, Cepollaro C, Pondrelli C et al (1996) Ultrasound parameters in osteoporotic patients treated with salmon calcitonin: a longitudinal study. Osteoporos Int 6: 303–307PubMedCrossRefGoogle Scholar
  13. Gonnelli S, Montagnani A, Cepollaro C et al (2000) Quantitative ultrasound and bone mineral density in patients with primary hyperparathyroidism before and after surgical treatment. Osteoporos Int 11: 255–260PubMedCrossRefGoogle Scholar
  14. Hans D, Dargent-Molina P, Schott AM et al (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348: 511–514PubMedCrossRefGoogle Scholar
  15. Hans D, Srivastav SK, Singal C et al (1999) Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? J Bone Miner Res 14: 644–651PubMedCrossRefGoogle Scholar
  16. Hasegawa K, Turner CH, Recker RR et al (1995) Elastic properties of osteoporotic bone measured by scanning acoustic properties. Bone 16: 85–90PubMedGoogle Scholar
  17. Huang C, Ross PD, Yates AJ et al (1998) Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 63: 380–384PubMedCrossRefGoogle Scholar
  18. Ingle BM, Hay SM, Bottjer HM et al (1999a) Changes in bone mass and bone turnover following ankle fracture. Osteoporos Int 10: 408–415PubMedCrossRefGoogle Scholar
  19. Ingle BM, Hay SM, Bottjer HM et al (1999b) Changes in bone mass and bone turnover following distal forearm fracture. Osteoporos Int 10: 399–407PubMedCrossRefGoogle Scholar
  20. Kanis J, Glüer CC (2000) An update on the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int 11: 192–202PubMedCrossRefGoogle Scholar
  21. Katz J, Meunier A (1987) The elastic anisotropy of bone. J Biomech 20: 1063–1070PubMedCrossRefGoogle Scholar
  22. Krieg MA, Jacquet AF, Bremgartner M et al (1999) Effect of supplementation with vitamin D3 and calcium on quantitative ultrasound of bone in elderly institutionalized women: a longitudinal study. Osteoporos Int 9: 483–488PubMedGoogle Scholar
  23. Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasound attenuation in cancellous bone. Eng Med 13: 89–91PubMedCrossRefGoogle Scholar
  24. Laugier P, Giat P, Berger G (1994) Broadband ultrasonic attenuation imaging: a new imaging technique of the os calcis. Calcif Tissue Int 54: 83–86PubMedCrossRefGoogle Scholar
  25. Mauloni M, Rovati LC, Porter RW (2000) Monitoring bone effect of transdermal hormone replacement therapy by ultrasound investigation at the phalanx: a four-year follow-up study. Menopause 7: 402–412PubMedCrossRefGoogle Scholar
  26. Mele R, Masci G, Ventura V et al (1997) Three-year longitudinal study with quantitative ultrasound at the hand phalanx in a female population. Osteoporos Int 7: 550–557PubMedCrossRefGoogle Scholar
  27. Nicholson PH, Bouxsein ML (2000) Quantitative ultrasound does not reflect mechanically induced damage in human cancellous bone. J Bone Miner Res 15: 2467–2472PubMedCrossRefGoogle Scholar
  28. Nicholson PH, Muller R, Cheng CG et al (2001) Quantitative ultrasound and trabecular architecture in the human calcaneus. J Bone Miner Res 16: 1886–1892PubMedCrossRefGoogle Scholar
  29. Njeh CF, Boivin CM, Gough A et al (1999a) Evaluation of finger ultrasound in the assessment of bone status with application of rheumatoid arthritis. Osteoporos Int 9: 82–90PubMedCrossRefGoogle Scholar
  30. Njeh CF, Hans D, Fuerst T et al (1999b) Quantitative ultrasound: assessment of osteoporosis and bone status. Dunitz, LondonGoogle Scholar
  31. Njeh CF, Hans D, Wu C et al (1999c) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 21: 651–659PubMedCrossRefGoogle Scholar
  32. Njeh CF, Saeed I, Grigorian M et al (2001) Assessment of bone status using speed of sound at multiple sites. J Ultrasound Med. 20: 1219–1228PubMedGoogle Scholar
  33. Pande KC, Bernard J, McCloskey EV et al (2000) Ultrasound velocity and dual-energy X-ray absorptiometry in normal and pagetic bone. Bone 26: 525–528PubMedCrossRefGoogle Scholar
  34. Röben P, Barkmann R, Ullrich S et al (2001) Assessment of phalangeal bone loss in patients with rheumatoid arthritis by quantitative ultrasound. Ann Rheum Dis 60: 670–677PubMedCrossRefGoogle Scholar
  35. Rosenthall L, Caminis J, Tenehouse A et al (1999) Calcaneal ultrasonometry: response to treatment in comparison with dual X-ray absorptiometry measurements of the lumbar spine and femur. Calcif Tissue Int 64: 200–204PubMedCrossRefGoogle Scholar
  36. Strelitzki R, Nicholson PHF, Evans JA (1997) Low-frequency ultrasound velocity measurements in human calcaneal trabecular bone. Physiol Meas 18: 119–127PubMedCrossRefGoogle Scholar
  37. van den Bergh JP, Noordam C, Ozyilmaz A et al (2000) Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage. Osteoporos Int 11: 967–976PubMedCrossRefGoogle Scholar
  38. Wuster C, Albanese C, de Aloysio et al (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group. J Bone Miner Res 15: 1603–1614Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • R. Barkmann
    • 1
  • C.-C. Glüer
    • 1
  1. 1.Medizinische Physik, Klinik für Diagnostische RadiologieUniversitätsklinikum KielKielGermany

Personalised recommendations