Advertisement

Molecular Beam Studies of Nanoscale Films of Amorphous Solid Water

  • R. Scott Smith
  • Zdenek Dohnálek
  • Greg A. Kimmel
  • Glenn Teeter
  • Patrick Ayotte
  • John L. Daschbach
  • Bruce D. Kay
Part of the Springer Series in Cluster Physics book series (CLUSTER)

Abstract

What is Amorphous Solid Water? Amorphous solid water (ASW) is a solid phase of water that is metastable with respect to the crystalline phase [1,2]. It is metastable because it is “trapped” in a configuration that has a higher free energy than the equilibrium crystalline configuration [3]. Amorphous solids, also known as glasses, are often described as structurally arrested or “frozen” liquids. Amorphous solids are most often formed when a liquid is cooled fast enough that crystallization does not occur prior to the system reaching a temperature where the structural relaxation timescale is long compared to the laboratory timescale, i.e. 100 s. The temperature where this occurs is called the glass transition temperature, T g .

Keywords

Crystallization Kinetic Nitrogen Uptake Desorption Rate Supercooled Liquid Excess Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Angell, Science 267, 1924–1934 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    M. G. Sceats, S. A. Rice. in Water: A Comprehensive Treatise, Volume 7 (ed. Franks, F.) 83–214 (Plenum Press, New York, 1982).Google Scholar
  3. 3.
    R. Zallen. The Physics of Amorphous Solids (John Wiley &; Sons, New york, 1983).CrossRefGoogle Scholar
  4. 4.
    P. G. Debenedetti. Metastable Liquids: Concepts and Principles (Princeton University Press, 1996).Google Scholar
  5. 5.
    G. P. Johari, A. Hallbrucker, E. Mayer, Nature 330, 552–553 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    O. Mishima, L. D. Calvert, E. Whalley, Nature 310, 393–395 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    O. Mishima, H. E. Stanley, Nature 396, 329–335 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    P. V. Hobbs. Ice Physics (Oxford University Press, London, 1974).Google Scholar
  9. 9.
    C. A. Angell. in Water: A Comprehensive Treatise, Volume 7 (ed. Franks, F.) 1–81 (Plenum Press, New York, 1982).Google Scholar
  10. 10.
    C. A. Angell, Ann. Rev. Phys. Chem. 34, 593–630 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    E. Mayer, R. Pletzer, Nature 319, 298 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    A. H. Delsemme, J. Phys. Chem. 87, 4214–4218 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    P. Jenniskens, D. F. Blake, Science 265, 753–756 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    J. Klinger, J. Phys. Chem. 87, 4209–4214 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    D. E. Brown, S. M. George, C. Huang, E. K. L. Wong, K. B. Rider, R. S. Smith, B. D. Kay, J. Phys. Chem. 100, 4988–4995 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    K. P. Stevenson, G. A. Kimmel, Z. Dohnálek, R. S. Smith, B. D. Kay, Science 283, 1505–1507 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    G. A. Kimmel, K. P. Stevenson, Z. Dohnálek, R. S. Smith, B. D. Kay, J. Chem. Phys. 114, 5284–5294 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    G. A. Kimmel, Z. Dohnálek, K. P. Stevenson, R. S. Smith, B. D. Kay, J. Chem. Phys. 114, 5295–5303 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    M. S. Westley, G. A. Baratta, R. A. Baragiola, J. Chem. Phys. 108, 3321–3326 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Dohnálek, G. A. Kimmel, P. Ayotte, R. S. Smith, B. D. Kay, submitted to J. Chem. Phys. (2002)Google Scholar
  21. 21.
    A. L. Barabasi, H. E. Stanley. Fractal Concepts in Surface Growth (Cambridge Univ. Press, Cambridge, 1995).MATHCrossRefGoogle Scholar
  22. 22.
    Z. Dohnálek, G. A. Kimmel, D. E. McCready, J. S. Young, A. Dohnálkova, R. S. Smith, B. D. Kay, Journal of Physical Chemistry B 106, 3526–3529 (2002)CrossRefGoogle Scholar
  23. 23.
    R. S. Smith, C. Huang, E. K. L. Wong, B. D. Kay, Surf. Sci. Lett. 367, L13-L17 (1996)CrossRefGoogle Scholar
  24. 24.
    R. S. Smith, B. D. Kay, Surf. Rev. and Lett. 4, 781–797 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    R. J. Speedy, P. G. Debenedetti, R. S. Smith, C. Huang, B. D. Kay, J. Chem. Phys. 105, 240–244 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    A. Kouchi, Nature 330, 550 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    N. J. Sack, R. A. Baragiola, Phys. Rev. B 48, 9973 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    P. Löfgren, P. Ahlstrm, D. V. Chakarov, J. Lausmaa, B. Kasemo, Surf. Sci. Lett. 367, L19 (1996)CrossRefGoogle Scholar
  29. 29.
    R. J. Speedy, J. Phys. Chem. 96, 2322–2325 (1992)CrossRefGoogle Scholar
  30. 30.
    M. A. Floriano, Y. P. Handa, D. D. Klug, E. Whalley, J. Chem. Phys. 91, 7187–7192 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    A. Hallbrucker, E. Mayer, G. P. Johari, J. Phys. Chem. 93, 4986–4990 (1989)CrossRefGoogle Scholar
  32. 32.
    G. P. Johari, G. Fleissner, A. Hallbrucker, E. Mayer, J. Phys. Chem. 98, 47194725 (1994)CrossRefGoogle Scholar
  33. 33.
    G. P. Johari, Philos. Mag. 35, 1077 (1977)ADSCrossRefGoogle Scholar
  34. 34.
    M. G. Sceats, S. A. Rice, Journal of Chemical Physics 72, 3260–3262 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    R. J. Speedy, P. G. Debenedetti, Molecular Physics 88, 1293–1316 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    V. P. Koverda, N. M. Bogdanov, V. P. Skripov, Journal of Non-Crystalline Solids 57, 203–212 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    A. Kouchi, T. Yamamoto, T. Kozasa, T. Kuroda, J. M. Greenberg, Astronomy and Astrophysics 290, 1009–1018 (1994)ADSGoogle Scholar
  38. 38.
    A. Kouchi, T. Yamamoto, Progress in Crystal Growth and Characterization of Materials 30, 83–108 (1995)CrossRefGoogle Scholar
  39. 39.
    P. Jenniskens, D. F. Blake, Astrophysical Journal 473, 1104–1113 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    W. Hage, A. Hallbrucker, E. Mayer, G. P. Johari, J. Chem. Phys. 100, 2743–2747 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    W. Hage, A. Hallbrucker, E. Mayer, G. P. Johari, J. Chem. Phys. 103, 545–550 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    Z. Dohnálek, R. L. Ciolli, G. A. Kimmel, K. P. Stevenson, R. S. Smith, B. D. Kay, J. Chem. Phys. 110, 5489–5492 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    Z. Dohnálek, G. A. Kimmel, R. L. Ciolli, K. P. Stevenson, R. S. Smith, B. D. Kay, J. Chem. Phys. 112, 5932–5941 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    R. S. Smith, C. Huang, E. K. L. Wong, B. D. Kay, Phys. Rev. Lett. 79, 909–912 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    M. Avrami, J. Chem. Phys. 9, 177 (1941)Google Scholar
  46. 46.
    C. N. R. Rao, K. J. Rao. Phase Transitions in Solids (McGraw-Hill, New York, 1978).Google Scholar
  47. 47.
    R. H. Doremus. Rates of Phase Transformations (Academic Press, New York, 1985).Google Scholar
  48. 48.
    J. P. Devlin, J. Geophys. Res.-Planets 106, 33333–33349 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    B. Rowland, J. P. Devlin, J. Chem. Phys. 94, 812–813 (1991)ADSCrossRefGoogle Scholar
  50. 50.
    J. P. Devlin, V. Buch, J. Phys. Chem. 99, 16534–16548 (1995)CrossRefGoogle Scholar
  51. 51.
    M. Fisher, J. P. Devlin, J. Phys. Chem. 99, 11584–11590 (1995)CrossRefGoogle Scholar
  52. 52.
    G. Teeter, Z. Dohnálek, P. Ayotte, J. Daschbach, G. A. Kimmel, R. S. Smith, B. D. Kay, Manuscript in preparationGoogle Scholar
  53. 53.
    R. J. Speedy, C. A. Angell, J. Chem. Phys. 65, 851–858 (1976)ADSCrossRefGoogle Scholar
  54. 54.
    G. P. Johari, J. Chem. Phys. 98, 7324–7329 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    G. P. Johari, J. Chem. Phys. 107, 10154–10165 (1997)ADSCrossRefGoogle Scholar
  56. 56.
    R. S. Smith, Z. Dohnálek, G. A. Kimmel, K. P. Stevenson, B. D. Kay. in ACS Symp. Series 820: Liquid Dynamics, Experiment, Simulation. and Theory (ed. Fourkas, J. T.) 198–211 (American Chemical Society, Washington, DC, 2002).CrossRefGoogle Scholar
  57. 57.
    R. S. Smith, C. Huang, B. D. Kay, J. Phys. Chem. B 101, 6123–6126 (1997)CrossRefGoogle Scholar
  58. 58.
    R. S. Smith, B. D. Kay, Nature 398, 788–791 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    R. S. Smith, Z. Dohnálek, G. A. Kimmel, K. P. Stevenson, B. D. Kay, Chem. Phys. 258, 291–305 (2000)CrossRefGoogle Scholar
  60. 60.
    F. X. Prielmeier, E. W. Lang, R. J. Speedy, H.-D. Ldemann, Ber. Bunsenges. Phys. Chem. 92, 1111–1117 (1988)Google Scholar
  61. 61.
    W. S. Price, H. Ide, Y. Arata, J. Phys. Chem. A 103, 448–450 (1999)Google Scholar
  62. 62.
    H. Weingärtner, Z. Phys. Chem. 132, 129–149 (1982)Google Scholar
  63. 63.
    F. X. Prielmeier, E. W. Lang, R. J. Speedy, H.-D. Ludemann, Phys. Rev. Lett. 59, 1128–1131 (1987)ADSCrossRefGoogle Scholar
  64. 64.
    D. Laufer, E. Kochavi, A. Bar-Nun, Phys. Rev. B: Condens. Matter 36, 92199227 (1987)CrossRefGoogle Scholar
  65. 65.
    P. Ayotte, R. S. Smith, K. P. Stevenson, Z. Dohnálek, G. A. Kimmel, B. D. Kay, J. Geophys. Res.-Planets 106, 33387–33392 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    T. Owen, A. Bar-Nun, Icarus 116, 215–226 (1995)ADSCrossRefGoogle Scholar
  67. 67.
    J. A. Nuth, H. G. M. Hill, G. Kletetschka, Nature 406, 275–276 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    A. Bar-Nun, I. Kleinfeld, Icarus 1989, 243–253 (1989)ADSCrossRefGoogle Scholar
  69. 69.
    C. F. Chyba, Nature 343, 129 (1990)ADSCrossRefGoogle Scholar
  70. 70.
    P. Ayotte, R. S. Smith, G. Teeter, Z. Dohnálek, G. A. Kimmel, B. D. Kay, Phys. Rev. Lett. 88, art. no.-245505 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • R. Scott Smith
  • Zdenek Dohnálek
  • Greg A. Kimmel
  • Glenn Teeter
  • Patrick Ayotte
  • John L. Daschbach
  • Bruce D. Kay

There are no affiliations available

Personalised recommendations