Advertisement

Water Confined at the Liquid-Air Interface

  • Mary Jane Shultz
  • Steve Baldelli
  • Cheryl Schnitzer
  • Danielle Simonelli
Part of the Springer Series in Cluster Physics book series (CLUSTER)

Summary

The liquid interface of aqueous solutions is of central importance to numerous phenomena from cloud processing of combustion generated oxides to corrosion degradation of structural materials to transport across cell membranes. Recently, the nonlinear spectroscopic method, sum frequency generation (SFG), has been applied to investigate the structure of liquid interfaces and alteration of that structure by materials in solution. This chapter focuses on two categories of materials in solution: inorganic ionic materials that are nonvolatile — H2SO4, HNO3, alkali sulfates and bisulfates, NaCl, and NaNO3 — and soluble molecules that are volatile — HCl and NH3. Ionic materials influence the structure of water at the interface through an electric double layer that arises from the differential distribution of anions and cations near the interface. Two models for the effect of the double layer are discussed. Soluble molecular materials of lower surface tension partition to the interface and displace surface water molecules. Ammonia is a rather unique probe of water at the surface. At low concentrations, ammonia merely docks to the dangling-OH groups. At intermediate concentrations, the surface changes little as the bulk concentration increases and at higher concentrations, ammonia blankets the surface and displaces water at the surface.

Keywords

Hydration Sphere Aqueous Surface High Frequency Peak Hydrated Proton Neat Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Wilson, A. Pohorille: J. Chem. Phys. 95, 6005–6013 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    D. Michael, I. Benjamin: J. Chem. Phys. 107, 5684–5693 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    I. Benjamin : Acc. Chem. Res. 28, 233 (1995).CrossRefGoogle Scholar
  4. 4.
    D. J. Tobias, P. Jungwirth, M. Parrinello: J. Chem. Phys. 114, 7036–7044 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    P. Jungwirth, D. J. Tobias: J. Phys. Chem. B, 10468–10472 (2001).Google Scholar
  6. 6.
    P. Jungwirth, D. J. Tobias: J. Phys. Chem. B 104, 7702–7706 (2000).CrossRefGoogle Scholar
  7. 7.
    P. Jungwirth: J. Phys. Chem. A 104, 145–148 (2000).CrossRefGoogle Scholar
  8. 8.
    X. D. Zhu, H. Suhr, Y. R. Shen: Phys. Rev. B 35, 3047 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    J. H. Hunt, P. Guyot-Sionnest, Y. R. Shen: Chem. Phys. Lett. 133, 189–192 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    Y. R. Shen: Nature. 337, 519 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    Q. Du, R. Superfine, E. Freysz, Y. R. Shen: Phys. Rev. Lett. 70, 2313–2316 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    C. Radüge, V. Pflumio, Y. R. Shen,: Chem. Phys. Lett. 274, 140–144 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    S. Baldelli, C. Schnitzer, M. J. Shultz, D. Campbell: J. Phys. Chem. B 101, 10435–10441 (1997).CrossRefGoogle Scholar
  14. 14.
    S. Baldelli, C. Schnitzer, M. J. Shultz, D. Campbell: J. Chem. Phys. Lett. 287, 143–147 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    S. Baldelli, C. Schnitzer, M. J. Shultz: Chem. Phys. Lett. 302, 157–163 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    S. Baldelli, D. Campbell, C. Schnitzer, M. J. Shultz: J. Phys. Chem. B. 103, 2789–2795 (1999).CrossRefGoogle Scholar
  17. 17.
    C. Schnitzer, S. Baldelli, D. J. Campbell, M. J. Shultz: J. Phys. Chem. A. 103, 6383–6386 (1999).CrossRefGoogle Scholar
  18. 18.
    C. Schnitzer, S. Baldelli, M. J. Shultz: Chem. Phys. Lett. 313, 416–420 (2000).CrossRefGoogle Scholar
  19. 19.
    C. Schnitzer, S. Baldelli, M. J. Shultz: J. Phys. Chem. B 104, 585–590 (2000).CrossRefGoogle Scholar
  20. 20.
    M. J. Shultz, C. Schnitzer, D. Simonelli, S. Baldelli: Int. Rev. Phys. Chem. 19, 123–153 (2000).CrossRefGoogle Scholar
  21. 21.
    M. J. Shultz, S. Baldelli, C. Schnitzer, D. Simonelli: J. Phys. Chem. B 106 (2002).Google Scholar
  22. 22.
    J. C. Conboy, M. C. Messmer, G. L. Richmond: J. Phys. Chem. 100, 7617 (1995).CrossRefGoogle Scholar
  23. 23.
    D. E. Gragson, G. L. Richmond: J. Chem. Phys. 107. 9687–9690 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    D. E. Gragson, G. L. Richmond: J. Phys. Chem. B 102, 569–576 (1998).CrossRefGoogle Scholar
  25. 25.
    M. C. Messmer, J. C. Conboy, G. L. Richmond: J. Am. Chem. Soc. 117, 8039 (1995).CrossRefGoogle Scholar
  26. 26.
    B. Dick, A. Gierulski, G. Marowsky, G. A. Reider: Appl. Phys. B 38, 107–116 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    B. Dick: Chem. Phys. 96, 199–215 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    C. Hirose, N. Akamatsu, K. Domen: Appl. Spec. 46, 1051–1072 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    C. Hirose, N. Akamatsu, K. Domen: J. Chem. Phys. 96, 997–1004 (1992).ADSCrossRefGoogle Scholar
  30. 30.
    R. E. Muenchausen, R. A. Keller, N. S. Nogar: J. Opt. Soc. Am. 4, 237–241 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    N. Akamatsu, K. Domen, C. Hirose: Appl. Spec. 46, 1051–102 (1992).ADSCrossRefGoogle Scholar
  32. 32.
    N. Bloembergen, P. S. Pershan: Phys. Rev. 128, 606–622 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    H. Chen, D. E. Irish: J. Phys. Chem. 75, 2672–2681 (1971).CrossRefGoogle Scholar
  34. 34.
    D. E. Irish, H. Chen: J. Phys. Chem. 74, 3796–3802 (1970).CrossRefGoogle Scholar
  35. 35.
    D. E. Irish, M. H. Brooker: Raman and Infrared Spectral Studies of Electrolytes, Clark, R. J. H. and Hester, R. E., Ed.; Heyden & Son: London, 1981, pp 212311.Google Scholar
  36. 36.
    C. I. Ratcliffe, D. E. Irish: J. Phys. Chem. 86, 4897–4905 (1982).CrossRefGoogle Scholar
  37. 37.
    C. I. Ratcliffe, D. E. Irish Can: J. Chem. 63, 3521–3525 (1985).Google Scholar
  38. 38.
    J. R. Scherer: The Vibrational Spectroscopy of Water, Clark, R. J. H. and Hester, R. E., Ed.; Heyden: Philadelphia, 5, 149–216 (1978).Google Scholar
  39. 39.
    J. R. Scherer, M. K. Go, S. Kint: J. Phys. Chem. 78, 1304–1313 (1974).CrossRefGoogle Scholar
  40. 40.
    V. Buch, J. P. Devlin: J. Chem. Phys. 110, 3437–3443 (1999).ADSCrossRefGoogle Scholar
  41. 41.
    J. P. Devlin, V. Buch: J. Phys. Chem. 99, 16534–16548 (1995).CrossRefGoogle Scholar
  42. 42.
    J. P. Devlin, V. Buch: J. Phys. Chem. B. 101, 6095–6098 (1997).CrossRefGoogle Scholar
  43. 43.
    J. P. Devlin, C. Joyce, V. Buch: J. Phys. Chem. A 104, 1974–1977 (2000).CrossRefGoogle Scholar
  44. 44.
    B. Rowland, N. S. Kadagathur, J. P. Devlin, V. Buch, T. Feldman, M. J. Wojcik: J. Chem. Phys. 102, 8328–8341 (1995).ADSCrossRefGoogle Scholar
  45. 45.
    C. J. Tsai, K. D. Jordan: J. Phys. Chem. 97, 5208–5210 (1993).CrossRefGoogle Scholar
  46. 46.
    S. Baldelli, C. Schnitzer, M. J. Shultz, D. J. Campbell: Sum Frequency Generation Study of Water at H2S04 and Cs 2 SO 4 Solutions : Las Vegas, NV, 1997.Google Scholar
  47. 47.
    S. Baldelli, C. S. Schnitzer, M. J. Shultz, D. J. Campbell: Probing H 2 O Molecules At the Interface of H 2 SO4/H2 O Solutions Using Sum Frequency Generation: Las Vegas, NV, 1997.Google Scholar
  48. 48.
    L. F. Phillips: Aust. J. Chem. 47, 91–100 (1994).CrossRefGoogle Scholar
  49. 49.
    D. H. Fairbrother, H. Johnston, G. Somorjai: J. Phys. Chem. 100, 13696–13700 (1996).CrossRefGoogle Scholar
  50. 50.
    S. Baldelli, C. Schnitzer, M. J. Shultz: J. Chem. Phys. 108, 9817–9820 (1998).ADSCrossRefGoogle Scholar
  51. 51.
    O. K. Rice: J. Phys. Chem. 32, 583–592 (1928).CrossRefGoogle Scholar
  52. 52.
    N. G. McDeffie: Langmuir. 17, 5711–5713 (2001).CrossRefGoogle Scholar
  53. 53.
    G. Nathanson, P. Davidovits, D. Worsnop, C. Kolb: J. Phys. Chem. 100, 13007 (1996).CrossRefGoogle Scholar
  54. 54.
    Q. Shi, P. Davidovits, J. T. Jayne, D. R. Worsnop, C. E. Kolb: J. Phys. Chem. A 103, 8812–8823 (1999).CrossRefGoogle Scholar
  55. 55.
    E. Swartz, Q. Shi, P. Davidovits, J. T. Jayne, D. R. Worsnop, C.E. Kolb: J. Phys. Chem. A 103, 8824–5533 (1999)CrossRefGoogle Scholar
  56. 56.
    B. J. Finlayson-Pitts, J. N. Pitts Jr: Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, (1999).Google Scholar
  57. 57.
    C. E. Kolb, D. R. Worsnop, M. S. Zahniser, P. Davidovits, L. F. Keyser, M. T. Leu, M. J. Molina, D. R. Hanson, A. R. Ravishankara: Laboratory Studies of Atmospheric Heterogeneous Chemistry; Barker, J., Ed.; World Scientific: Singapore, 771–875 (1995).Google Scholar
  58. 58.
    T. S. Bates, B. J. Huebert, J. L. Gras, F. B. Griffiths, P. A. J. Durkee: Geophys. Res. 103, 16 (1998).Google Scholar
  59. 59.
    D. Simonelli, S. Baldelli, M. Shultz: J.Chem. Phys. Lett. 28, 400–404 (1998).CrossRefGoogle Scholar
  60. 60.
    D. J. Donaldson: J. Phys. Chem. A 103, 62–70 (1999).CrossRefGoogle Scholar
  61. 61.
    C. D. Bain, P. B. Davies, T. H. Ong, R. N. Ward: Langmuir. 7, 1563 (1991).CrossRefGoogle Scholar
  62. 62.
    D. Simonelli, M. J. Shultz: J. Chem. Phys. 112, 6804–6816 (2000).ADSCrossRefGoogle Scholar
  63. 63.
    D. D. Nelson Jr, G. T. Fraser, W. Klemperper: Science. 238, 1670–1674 (1987).ADSCrossRefGoogle Scholar
  64. 64.
    O. S. Binbrek, A. Anderson: Chem. Phys. Lett. 15, 421 (1972).ADSCrossRefGoogle Scholar
  65. 65.
    J. J. Lagowski: The Chemistry of Non-Aqueous Solvents, II Acidic and Basic Solvents; Academic Press: New York, 1967; Vol. II. Google Scholar
  66. 66.
    W. B. Fischer, H. H. Eysel,: J. Mol. Struct. 415, 249 (1997).ADSCrossRefGoogle Scholar
  67. 67.
    C. A. Plint, R. M. B. Small, H. L. Welsh: Can. J. Chem. 32, 653 (1954).Google Scholar
  68. 68.
    L. B. Magnusson: J. Phys. Chem. 74, 4221–4228 (1970).CrossRefGoogle Scholar
  69. 69.
    M. Falk, E. Whalley: J. Chem. Phys. 34, 1554 (1961).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Mary Jane Shultz
  • Steve Baldelli
  • Cheryl Schnitzer
  • Danielle Simonelli

There are no affiliations available

Personalised recommendations