Minerals, Ceramics and Glasses

  • R. St. C. Smart
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 23)


In materials science and technology applied to minerals, ceramics and glasses, surface analysis is used in three principal modes: problem solving in quality control for existing processes and materials; materials characterisation after adsorption, surface coating, reaction or modification; and development of new materials or processes. We can illustrate each of these modes with a few examples. In problem solving, difficulties with control of contamination, coating or adsorption chemistry, adherence (e.g. delamination), discolouration and changes in surface reactivity are common. Characterisation includes the rapidly expanding industry of surface engineering of ceramic and glass layers for corrosion and wear resistance, alteration of surfaces for composite (e.g. polymer) compatibility and mineral surface weathering. The last area encompasses long-term projects in processes as diverse as minerals separation to bioceramic design for materials as diverse as clays, nuclear waste solids and superconductors.


High Resolution Transmission Electron Microscopy Siliceous Layer Scanning Tunnelling Spectroscopy Butyl Xanthate Ethyl Xanthate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Kuys, J. Ralston, R.St.C. Smart, S. Sobieraj, R. Wood, P.S. Turner: Surface characterisation, iron removal and enrichment of bauxite ultrafines. Miner. Eng. 3, 421 (1990)CrossRefGoogle Scholar
  2. 2.
    R.St.C. Smart, B.G. Baker, P.S. Turner: Aspects of surface science in Australian industry. Aust. J. Chem. 43, 241 (1990)CrossRefGoogle Scholar
  3. 3.
    A.N. Buckley: The application of X-ray photoelectron spectroscopy to flotation research. Colloids and Surf. 93, 159–172 (1994)CrossRefGoogle Scholar
  4. 4.
    I. Kartio, K. Laajalehto, E. Suoninen: Application of electron spectroscopy to characterization of mineral surfaces in flotation studies. Colloids and Surf. 93, 149–158 (1994)CrossRefGoogle Scholar
  5. 5.
    J.R. Mycroft, H.W. Nesbitt, A.R. Pratt: X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: distribution of oxidized species with depth. Geochim. Cosmochim. Acta. 59, 721–733 (1995)CrossRefGoogle Scholar
  6. 6.
    R.St.C. Smart: Surface layers in base metal sulfide flotation. Miner. Eng. 4, 891–909 (1991)CrossRefGoogle Scholar
  7. 7.
    S.L. Chryssoulis, K.G. Stowe, F. Reich: Characterisation of composition of mineral surfaces by laser-probe analysis. Trans. Inst. Min. Metall. Sect. C 101, c1–6 (1992)Google Scholar
  8. 8.
    J.S. Brinen, S. Greenhouse, D.R. Nagaraj, J. Lee: SIMS and SIMS imaging studies of adsorbed dialkyl dithiophosphinates on PbS crystal surfaces. Int. J. Miner. Process. 38, 93–109 (1993)CrossRefGoogle Scholar
  9. 9.
    E. Suoninen, K. Laajalehto: Structure of thiol collector layers on sulfide surfaces. Proc. Int. Miner. Process. Congr., 15th (Sydney, Aust.). Australian Institute of Mining and Metallurgy, Melbourne 3, 625–629 (1993)Google Scholar
  10. 10.
    J.M. Cases, P. de Donato, M. Kongolo, L. Michot: An infrared investigation of amyl xanthate adsorption by pyrite after wet grinding at natural and acid pH. Colloids and Surf. 36, 323–338 (1989)CrossRefGoogle Scholar
  11. 11.
    A.N. Buckley, I.C. Hamilton, R. Woods: Investigation of the surface oxidation of sulphide minerals by linear potential sweep voltammetry and X-ray photoelectron spectroscopy, in Flotation of Sulphide Minerals, ed. K.S. Forssberg (Elsevier, Amsterdam 1985) pp.41–60Google Scholar
  12. 12.
    J. Mielcarzski: XPS study of ethyl xanthate adsorption on oxidized surface of cuprous sulfide. J. Colloid Interface Sci. 120, 201–209 (1987)CrossRefGoogle Scholar
  13. 13.
    R.St.C. Smart, J. Amarantidis, W. Skinner, C.A. Prestidge, L. LaVanier, S. Grano: Surface analytical studies of oxidation and collector adsorption in sulfide mineral flotation, in The Solid-Liquid Interface: A Surface Science Approach, (Eds K. Wandelt, J. O’Connor and S.M. Thurgate) (Springer Verlag, Berlin 2001), in pressGoogle Scholar
  14. 14.
    S. Grano, J. Ralston, R.St.C. Smart: Influence of electrochemical environment in the flotation behaviour of sulphide ores. Int. J. Miner. Proc. 30, 69 (1990)CrossRefGoogle Scholar
  15. 15.
    B.S. Kim, R.A. Hayes, C.A. Prestidge, J. Ralston, R.St.C. Smart: In-situ scanning tunneling microscopy studies of galena surfaces under flotation related conditions. Colloids and Surf. A, 117, 117–129 (1996)CrossRefGoogle Scholar
  16. 16.
    A.R. Gerson, A.G. Lange, K.P. Prince, R.St.C. Smart: The mechanism of copper activation of sphalerite. Appl. Surface Sci., 137, 207–223 (1999)CrossRefGoogle Scholar
  17. 17.
    K. Laajalehto, R.St.C. Smart, E. Suoninen. STM and XPS investigation of reaction of galena in air. Appl. Surf. Sci. 64, 29–39 (1993)CrossRefGoogle Scholar
  18. 18.
    B.S. Kim, R.A. Hayes, C.A. Prestidge, J. Ralston, R.St.C. Smart: Scanning tunneling microscopy studies of galena: the mechanism of oxidation in air. Appl. Surf. Sci. 78, 385–397 (1994)CrossRefGoogle Scholar
  19. 19.
    B.S. Kim, R.A. Hayes, C.A. Prestidge, J. Ralston, R.St.C. Smart: Scanning tunneling microscopy studies of galena: the mechanisms of oxidation in aqueous solution. Langmuir 11, 2554–2562 (1995)CrossRefGoogle Scholar
  20. 20.
    G. Wittstock, I. Kartio, D. Hirsch, S. Kunze, R. Szargan: Oxidation of galena in acetate buffer investigated by atomic force microscopy and photoelectron spectroscopy. Langmuir, 12, 5709 (1996)CrossRefGoogle Scholar
  21. 21.
    C.M. Eggleston, M.F. Hochella, Jr: Scanning tunneling microscopy of sulfide surfaces. Geochim. Cosmochim. Acta. 54, 1511 (1990)CrossRefGoogle Scholar
  22. 22.
    C.M. Eggleston, M.F. Hochella, Jr: Scanning tunneling microscopy of galena (100) surface oxidation and sorption of aqueous gold. Science 254, 983 (1991)CrossRefGoogle Scholar
  23. 23.
    C.M. Eggleston, M.F. Hochella, Jr: Scanning tunneling microscopy of pyrite (100) surface structure and step reconstruction. Am. Mineral. 77, 221 (1992)Google Scholar
  24. 24.
    C.M. Eggleston, M.F. Hochella, Jr: The structure of hematite (001) surfaces by scanning tunneling microscopy. Am. Mineral. 77, 911 (1992)Google Scholar
  25. 25.
    C.M. Eggleston, M.F. Hochella, Jr: Scanning tunneling microscopy applied to PbS (001) surfaces. Am. Mineral. 78, 877 (1993)Google Scholar
  26. 26.
    C.M. Eggleston, M.F. Hochella, Jr: in The Environmental Chemistry of Sulphide Oxidation, ACS Symposium Series, 550, eds C.N. Alpers and D.W. Blowes, American Chemical Society, Washington DC, 201 (1994)Google Scholar
  27. 27.
    M.F. Hochella, Jr, C.M. Eggleston, V.B. Elings, G.A. Parks, C.E. Brown Jr, C.M. Wu, NS k. Kjoller: Mineralogy in two dimensions: scanning tunneling microscopy of semiconducting minerals with implications for geochemical reactivity. Am. Mineral. 74, 1235 (1989)Google Scholar
  28. 28.
    M.F. Hochella, Jr: in Mineral Surfaces, eds. D.J. Vaughan and R.A.D. Pattrick, Min. Soc. Series No. 5, (Chapman and Hall, London 1995) p. 17Google Scholar
  29. 29.
    R.J. Atkinson, R.L. Parfitt, R.St.C. Smart: Infrared study of phosphate adsorption on goethite. J. Chem. Soc., Faraday I 70, 1472 (1974)Google Scholar
  30. 30.
    R.R. Martin, R.St.C. Smart: X-ray photoelectron of anion adsorption on goethite. Soil Sci. Soc. Am. J. 51, 1 (1987)CrossRefGoogle Scholar
  31. 31.
    D.J. Vaughan and R.A.D. Pattrick (eds). Mineral Surfaces, Min. Soc. Series No. 5, (Chapman and Hall, London 1995)Google Scholar
  32. 32.
    W.H. Casey: ref. [31], p185ffGoogle Scholar
  33. 33.
    J.F. Banfield, B.F. Jones, D.R. Veblen: An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon II: diagenetic modification of the sedimentary assemblage. Geochim. Cosmochim. Acta, 55, 2795–810 (1991)CrossRefGoogle Scholar
  34. 34.
    R.A. Eggleton: Formation of iddingsite rims on olivine: a transmission electron microscope study. Clays Clay Miner., 32, 1–11 (1984)CrossRefGoogle Scholar
  35. 35.
    R.St.C. Smart with P. Arora, B. Braggs, H.M. Fagerholm, T.J. Horr, D.C. Kehoe, J.G. Matisons, J.B. Rosenholm, J. Ralston: Modification of Oxide, Glass, Mineral and Metal Surfaces Using Adsorption, Plasma and Sol-Gel Reactions, in Interfaces of Ceramic Materials: Impact on Properties and Applications, eds. K. Uematsu, Y. Moriyoshi, Y. Saito and J. Nowotny, Trans Tech Publications, 361–404 (1996)Google Scholar
  36. 36.
    R.L. Segall, R.St.C. Smart, P.S. Turner, T.J. White: Microstructural characterisation of Synroc C and E by electron microscopy. J. Am. Ceram. Soc. 68, 64 (1985)CrossRefGoogle Scholar
  37. 37.
    J.A. Cooper, D.R. Cousens, J. Hanna, R.A. Lewis, S. Myhra, R.L. Segall, R.St.C. Smart, P.S. Turner, T.J. White: Intergranular films and pore surfaces in Synroc C: structure, composition and dissolution characteristics. J. Amer. Ceram. Soc. 69, 347 (1986)CrossRefGoogle Scholar
  38. 38.
    T.J. White, R.L. Segall, P.S. Turner: Radwaste immobilisation by structural modification the crystallochemical properties of Synroc, a titanate ceramic. Angew. Chemie (Int. Ed. Engl.) 24, 357 (1985)CrossRefGoogle Scholar
  39. 39.
    P.E. Fielding, T.J. White: Crystal chemical incorporation of high-level waste species in aluminotitanate-based ceramics: Valence, location, radiation damage and hydrothermal durability. J. Mater. Res. 2, 387 (1987)CrossRefGoogle Scholar
  40. 40.
    W.J. Buykx, K. Hawkins, D.M. Levins, H. Mitamura, R.St.C. Smart, G.J. Stevens, K.G. Watson, D. Weedon, T.J. White: Titanate ceramics for the immobilization of sodium-bearing high-level nuclear waste. J. Am. Ceram. Soc. 71, 678 (1988)CrossRefGoogle Scholar
  41. 41.
    S. Myhra, R.St.C. Smart, P.S. Turner: The surfaces of titanate minerals, ceramics and silicate glasses: surface analytical and electron microscope studies. Scanning Microsc. 2, 715 (1988)Google Scholar
  42. 42.
    S. Myhra, A. Atkinson, J.C. Riviere, D. Savage: A surface analytical study of Synroc subjected to hydrothermal attack. J. Am. Ceram. Soc. 67, 223 (1984)CrossRefGoogle Scholar
  43. 43.
    T. Kastrissios, M. Stephenson, P.S. Turner, T.J. White: Hydrothermal dissolution of perovskite: implications for Synroc formulation. J. Amer. Ceram. Soc. 70, C144 (1987)CrossRefGoogle Scholar
  44. 44.
    S. Myhra, D.K. Pham, R.St.C. Smart, P.S. Turner: Surface reaction and dissolution of Ceramic and high temperature superconductors, in Science of Ceramic Interfaces, ed. J. Nowotny Mat. Sci. Monographs, 75, (Elsevier, Amsterdam 1991) p.569Google Scholar
  45. 45.
    P.S. Arora, R.St.C. Smart: Formation of silicate structures in oxidised nickel surfaces using low temperature plasma reaction. Surf. Interface Anal. 24, 539–548 (1996)CrossRefGoogle Scholar
  46. 46.
    M. Steveson, P.S. Arora, R.St.C. Smart: XPS studies of low temperature plasma-produced graded oxide-silicate-silica layers on titanium. Surf. Interface Anal 26, 1027–1034 (1998)CrossRefGoogle Scholar
  47. 47.
    C.D. Wagner: Faraday Discuss. Chem. Soc., 60, 291 (1975)Google Scholar
  48. 48.
    R.St.C. Smart, P.S. Arora, M. Steveson, N. Kawashima, G.P. Cavallaro, H. Ming, W.M. Skinner: New approaches to metal-ceramic and bioceramic interfacial bonding, in Ceramic Interfaces: Properties and Applications II, ed. S-J Kang, H-I Yoo and J. Nowotny, Inst. Materials Press (UK), 293–326 (2000)Google Scholar
  49. 49.
    D.E. Clark, L.L. Hench: An overview of the physical characterisation of leached glass surfaces. Nucl. Chem. Waste Manage. 2, 93 (1981)CrossRefGoogle Scholar
  50. 50.
    R.A. Lewis, S. Myhra, R.L. Segall, R.St.C. Smart, P.S. Turner: The surface layer formed on zinc-containing glass during aqueous attack. J. Non-Cryst. Solids 53, 299 (1982)CrossRefGoogle Scholar
  51. 51.
    N.S. McIntyre, G.C. Strathdee, D.F. Phillips: SIMS studies of the aqueous leaching of a borosilicate glass. Surf. Sci. 100, 71 (1980)CrossRefGoogle Scholar
  52. 52.
    V.C. Farmer (ed.): The infrared spectra of minerals. Mineral. Soc. Monograph 4, London 285–303 (1974)Google Scholar
  53. 53.
    H.M. Fagerholm, J.B. Rosenholm, T.J. Horr, R.St.C. Smart: Modification of E-glass fibres by long chain alcohol adsorption. Colloids and Surf. 110, 11–22 (1996)CrossRefGoogle Scholar
  54. 54.
    H.M. Fagerholm, C. Lindsjo, J.B. Rosenholm, K. Rokman: Colloids and Surf. 69, 79 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • R. St. C. Smart

There are no affiliations available

Personalised recommendations