Urban Field Campaigns

  • P. Mestayer
  • R. Almbauer
  • O. Tchepel


One of the primary aims of the field campaigns within SATURN was to provide measuring data of good quality allowing evaluation of numerical tools. Dispersion models need to be validated in various urban environments and for the whole range of meteorological conditions occurring in the real atmosphere. However, experimental data for model validation are particularly scarce for some specific conditions such as a stable atmosphere with calm or light winds, coastal breeze and mountain-valley circulation, etc. In order to enrich existent set of validation data, experimental campaigns within SATURN have been designed. Related activities contributed also to a significant improvement of our understanding of airflow, dispersion and chemical transformation processes at the local and urban scales.


Wind Speed Wind Direction Dispersion Model Street Canyon Sonic Anemometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams HS, Kenny LC, Nieuwenhuijsen MJ, Colvile R, Gussman R (2001a) Design and validation of a high flow personal sampler for PM2.5 J Exposure Anal Env Med 11: 5–11CrossRefGoogle Scholar
  2. Adams HS, Nieuwenhuijsen MJ, Colvile RN, McMullen MAJ, Khandelwal P (2001b) Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Sci Total Environ 279: 29–44CrossRefGoogle Scholar
  3. Adams HS, Nieuwenhuijsen MJ, Colvile RN (2001c) Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Atmos Environ 35: 4557–4566CrossRefGoogle Scholar
  4. Adams HS, Nieuwenhuijsen MJ, Colvile RN, Older MJ, Kendall M (2002) Assessment of road users’ elemental carbon personal exposure levels, London, UK. Submitted to Atmos Environ, October 2001, ManuscriptGoogle Scholar
  5. Almbauer RA, Pucher K, Sturm PJ (1995) Air quality modeling for the city of Graz. Mete-orol Atmos Phys 57: 31–42CrossRefGoogle Scholar
  6. Benson P (1992) A review of the development and application of the CALINE3 and 4 models. Atmos Environ 26B, No 3: 379–390Google Scholar
  7. Berkowicz R, Ketzel M, Vachon G, Louka P, Rosant JM, Mestayer PG, Sini JF (2002) Examination of traffic pollution distribution in a street using the Nantes’99 experimental data and comparison with model results. Water Air Soil Poll: Focus 2, 311–324CrossRefGoogle Scholar
  8. Borrego C, Barros N, Valinhas MJ, Santos P, Miranda AI, Carvalho AC, Tchepel O, Lopes M, Abreu F (1998) Final Report AMAZOC (Atmospheric Environment in Coastal Zones: Assessment of Ecosystem Load Capacity — PRAXIS/3/3.2/AMB/38/94). Depar-tamento de Ambiente e Ordenamento, Universidade de Aveiro, Portugal, 213 ppGoogle Scholar
  9. Borrego C, Barros N, Barros N, Lopes M, Conceino M, Valinhas MJ, Tchepel O, Coutinho M, Lemos S (1999) Data collection for mesoscale models validation: a field campaign. In: Borrell, PM, Borrell P (eds) Proc EUROTRAC-2 Symposium’98, WIT Press, Southampton, pp.467–471Google Scholar
  10. Etling D (1990) On Plume Meandering under Stable Stratification. Atmos Environ 8: 1979–1985Google Scholar
  11. Granberg M, Niittymäki J, Karppinen A, Kukkonen J (2000) Combined application of traffic microsimulation and street canyon dispersion models, and evaluation of the modelling system against measured data. In: Sucharov L, Brebbia CA (eds) Urban Transport VI, Urban Transport and the Environment for the 21st Century. WIT Press, Southampton, pp 349–358Google Scholar
  12. Karppinen A, Joffre SM, Kukkonen J, Bremer P (2001) Evaluation of inversion strengths and mixing heights during extremely stable atmospheric stratification, Int J Environ Pollut 16, Nos 1–6Google Scholar
  13. Kukkonen J, Salmi T, Saari H, Konttinen M, Kartastenpää R (1999) Review of urban air quality in Finland. Boreal Environ Res 4, No 1: 55–65Google Scholar
  14. Kukkonen J, Valkonen E, Waiden J, Koskentalo T, Karppinen A, Berkowicz R, Kartastenpää R (2000) Measurements and modelling of air pollution in a street canyon in Helsinki. Environ Monit Assess 65 (1/2): 371–379CrossRefGoogle Scholar
  15. Kukkonen J, Valkonen E, Waiden J, Koskentalo T, Aarnio P, Karppinen A, Berkowicz R, Kartastenpää R (2001a) A measurement campaign in a street canyon in Helsinki and comparison of results with predictions of the OSPM model. Atmos Environ 35, No 2: 231–243CrossRefGoogle Scholar
  16. Kukkonen J, HärkÖnen J, Waiden J, Karppinen A, Lusa K (2001b) Evaluation of the dispersion model CAR-FMI against data from a measurement campaign near a major road. Atmos Environ 35, No 5: 949–960CrossRefGoogle Scholar
  17. Lazar R, Podesser A (1999) An urban climate analysis of Graz and its significance for urban planning in the tributary valleys east of Graz. Atmos Environ 33: 4195–4209CrossRefGoogle Scholar
  18. Lohmeyer A, Müller WJ, Bächlin W (2002) A comparison of street canyon concentration predictions by different modellers: final results now available from the Podbi-Exercise. Atmos Environ 36: 157–158CrossRefGoogle Scholar
  19. Louka P, Vachon G, Sini JF, Mestayer PG, Rosant JM (2002) Thermal effects on the airflow in a street canyon — Nantes ′99 experimental results and model simulation. Water Air Soil Poll: Focus 2, No 5–6: 351–364Google Scholar
  20. Mestayer PG, Durand P (2002) The UBL/CLU-Escompte experiment: description and first results. In: Proc. 4th symposium on Urban Climatology, May 2002, Norfolk, VA (Paper 3.1)Google Scholar
  21. Öttl D, Kukkonen J, Almbauer RA, Sturm PJ, Pohjola M, Härkönen J (2001) Evaluation of a Gaussian and a Lagrangian model against a roadside dataset, with focus on low wind speed conditions. Atmos Environ 35: 2123–2132CrossRefGoogle Scholar
  22. Piringer M, Baumann K (1999) Modifications of a valley wind system by an urban area-experimental results. Meteorol Atmos Phys 71: 117–125CrossRefGoogle Scholar
  23. Vachon G (2001) Transfert des pollutants des sources fixes et mobiles dans la canopée urbaine: évaluation expérimentale. Doctoral thesis, University of Nantes, 23 October 2001Google Scholar
  24. Vachon G, Rosant JM, Mestayer PG, Sini JF (1999) Measurements of dynamic and thermal field in a street canyon, URBCAP Nantes ′99. In: 6th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. 11–14 Octobre 1999, Rouen, France, Volume of Preprints, pp 239–240Google Scholar
  25. Vachon G, Rosant J-M, Mestayer PG, Louka P, Sini J-F (2000a) Pollutant Dispersion in an Urban Street Canyon in Nantes: Experimental Study. In: Proc. Symposium 2000 EUROTRAC-2, 27–31 March 2000, Garmish-PartenkirchenGoogle Scholar
  26. Vachon G, Rosant JM, Mestayer PG, Louka P, Sini JF, Delaunay D, Antoine MJ, Ducroz F, Garreau J, Griffiths R, Jones C, Lorin Y, Molle F, Péneau JP, Tétard Y, Violleau M (2000b) Experimental investigation of pollutant dispersion within a street in low wind conditions. In: 9th International Scientific Symposium Transport and Air Pollution, 5–8 Juin 2000, Avignon, France, Actes INRETS No 70, Ed. R. Joumard, vol 1, pp 95–102Google Scholar
  27. Vachon G, Louka P, Rosant JM, Mestayer PG, Sini JF (2002) Measurements of traffic-induced turbulence within a street-canyon during Nantes ′99 experiment. Water Air Soil Poll: Focus 2, No 5–6: 127–140CrossRefGoogle Scholar
  28. Wallenius L, Kukkonen J, Karppinen A, Waiden J, Kartastenpää R, Koskentalo T, Aarnio P, Berkowicz R (2001) Evaluation of the OSPM model against the data measured during one year in Runeberg street, Helsinki. In: Cuvelier C et al.(eds) Seventh International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. Joint Research Centre, European Commission, Ispra, Italy, pp 72–75Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. Mestayer
    • 1
  • R. Almbauer
    • 2
  • O. Tchepel
    • 3
  1. 1.Equipe Dynamique de l’ Atmosphere Habitee, Laboratoire de Mecanique des FluidesEcole Centrale de NantesNantes Cedex 3France
  2. 2.Technology Institute for Internal Combustion Engines and Thermo-dynamicsGraz UniversityGrazAustria
  3. 3.Department of Environment and PlanningUniversity of AveiroAveiroPortugal

Personalised recommendations