Skip to main content

Bioanalytical Application of Impedance Analysis: Transducing in Polymer-Based Biosensors and Probes for Living Tissues

  • Chapter
Ultrathin Electrochemical Chemo- and Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 2))

  • 471 Accesses

Abstract

Impedance measurements have been a somewhat neglected method of electrochemical transduction. This is despite the fact that these measurements are both extremely sensitive and ideally suited to interfacial phenomena. This review will highlight the work of the authors and others in the development of both biosensors and devices for bacterial and cellular monitoring which incorporate such measurements. The review will pay particular attention to the novel combination of conducting polymers and impedance measurements that has been developed to create label-free or reagentless biosensor instruments. Finally the review will examine some of the new directions of research that may ultimately make impedance measurements more accessible to the general science community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wallace GG, Kane-Maguire LAP (2002) Manipulating and monitoring biomolecular interactions with conducting electroactive polymers. Adv Mater 14: 953 - 960

    CAS  Google Scholar 

  2. Lillie G, Payne P, Vadgama P (2001) Electrochemical impedance spectroscopy as a platform for reagentless bioaffinity sensing. Sens Actuators B 78: 249 - 256

    Article  Google Scholar 

  3. Smith DE (1966) AC polarography and related techniques: theory and practice. In: Bard AJ (ed) Electroanalytical chemistry, vol 1. Marcel Dekker, New York, pp 1 - 155

    Google Scholar 

  4. Gallardo Soto AM, Jaffari SA, Bone S (2001) Characterisation and optimisation of AC conductimetric biosensors. Biosens Bioelectron 16: 23 - 29

    Article  Google Scholar 

  5. Alfonta L, Bardea A, Khersonsky O, Katz E, Wilner I (2001). Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors. Biosens Bioelectron 16: 675 - 687

    Article  CAS  Google Scholar 

  6. Saum AGE, Cumming RH, Rowell FJ (1998) Use of substrate-coated electrodes and AC impedance spectroscopy for the detection of enzyme activity. Biosens Bioelectron 13: 511 - 518

    Article  CAS  Google Scholar 

  7. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100: 2595 - 2626

    Article  CAS  Google Scholar 

  8. Lewis TW, Wallace GG, Smyth MR (1999) Electrofunctional polymers: their role in the development of new analytical systems. Analyst 124: 213 - 219

    Article  CAS  Google Scholar 

  9. Wang LX, Li XG, Yang YL (2001) Preparation, properties and applications of polypyrroles. React Funct Polym 47: 125 - 139

    Article  CAS  Google Scholar 

  10. Taylor RF, Marenchic IG, Spencer RH (1991) Antibody-based and receptor-based bio-sensors for detection and process control. Anal Chim Acta 249: 67 - 70

    Article  CAS  Google Scholar 

  11. Nishizawa M, Matsue T, Uchida I (1992) Penicillin sensor based on a microarray electrode coated with pK-responsive polypyrrole. Anal Chem 64: 2642 - 2644

    Article  CAS  Google Scholar 

  12. Contractor AQ, Sureshkumar TN, Narayanan R, Sukeerthi S, Lal R, Srinivasa RS (1994) Conducting polymer-based biosensors. Electrochim Acta 39: 1321 - 1324

    Article  CAS  Google Scholar 

  13. Sargent A, Sadik OA (1999) Monitoring antibody-antigen reactions at conducting polymer-based immunosensors using impedance spectroscopy. Electrochim Acta 44: 46674675

    Google Scholar 

  14. Talaie A, Wallace GG (1994) The effect of the counterion on the electrochemical properties of conducting polymers - a study using resistometry. Synthetic Met 63: 83 - 88

    Article  CAS  Google Scholar 

  15. Whitley D (1999) Introduction to principles of impedance. Impedance microbiology. Don Whitley Scientific, Shipley. http://www.dwscientific.co.uk/pdf/pw/pw2.pdf. Cited 27 Aug 2002

    Google Scholar 

  16. Cole KS, Curtis HJ (1939) Electrical impedance of squid giant axon during activity. J Gen Physiol 22: 649 - 670

    Article  CAS  Google Scholar 

  17. Fricke H (1926) The electric capacity of suspensions with special reference to blood. J Gen Physiol 9: 137 - 152

    Article  Google Scholar 

  18. Fricke H, Curtis HJ (1935) The electric impedance of hemolyzed suspensions of mammalian erythrocytes. J Gen Physiol 18: 821 - 836

    Article  CAS  Google Scholar 

  19. Schwan HP (1957) Electrical properties of tissues and cell suspensions. In: Lawrence JH, Tobias CA (eds) Advances in biological and medical physics. Academic, New York, vol 5, 147 - 209

    Google Scholar 

  20. Ur A, Brown DFJ (1975) Impedance monitoring of bacterial activity. J Med Microbiol 8: 19 - 27

    Article  CAS  Google Scholar 

  21. Cady P (1978) Progress in impedance measurements in microbiology. In: Sharpe AN, Clark DS (eds) Mechanising microbiology. Charles C. Thomas, Springfield, pp 199 - 239

    Google Scholar 

  22. Richards JCS, Jason AC, Hobbs G, Gibson DM, Christie RH (1978) Electronic measurement of bacterial growth. J Phys E 11: 560 - 568

    Article  CAS  Google Scholar 

  23. Hause LL, Komorowski RA, Gayon F (1981) Electrode and electroyte impedance in the detection of bacterial growth. IEEE Trans Biomed Eng 28: 403 - 410

    Article  CAS  Google Scholar 

  24. Gnan S, Luedecke LO (1982) Impedance measurements in raw milk as an alternative to the standard plate count. J Food Prot 45: 4 - 7

    Google Scholar 

  25. Sorrells KM (1981) Rapid detection of bacterial content in cereal grain products by automated impedance measurements. J Food Prot 44: 832

    Google Scholar 

  26. Coppola K, Firstenberg-Eden R (1988) Impedance-based rapid method for detection of spoilage organisms in UHT low-acid foods. J Food Sci 53: 1521

    Article  Google Scholar 

  27. Van Spreekens KJA, Stekelenburg FK (1986) Rapid estimation of the bacteriological quality of fresh fish by impedance measurements. Appl Microbiol Biotechnol 24: 95 - 96

    Article  Google Scholar 

  28. Firstenberg-Eden R (1983) Rapid estimation of the number of microorganisms in raw meat by impedance measurement. Food Technol 37: 64 - 70

    Google Scholar 

  29. Henscke PA, Thomas DS (1988) Detection of wine yeast by electronic methods. J Appl Bacteriol 53: 123 - 133

    Google Scholar 

  30. Deak T, Beuchat LR (1993) Comparison of conductimetric and traditional plating techniques for detecting yeasts in fruit juices. J Appl Bacteriol 75: 546 - 550

    Article  Google Scholar 

  31. Nieuwenhof FFJ, Hoolwerf JD (1987) Impedance measurement as an alternative to the plate-count method for estimating the total count of bacteria in raw milk. J Food Prot 50: 665 - 668

    Google Scholar 

  32. Colquhoun KO, Timms S, Fricker CR (1995) Detection of Escherichia coli in potable water using direct impedance technology. J Appl Bacteriol 79: 635 - 639

    Article  CAS  Google Scholar 

  33. Firstenberg-Eden R, Klein CS (1983) Evaluation of a rapid impedimetric procedure for the quantitative estimation of coliforms. J Food Sci 48: 1307 - 1311

    Article  Google Scholar 

  34. Ministry of Agriculture, Fisheries and Food (1989) The processed animal protein order, 1989. Statutory Instrument 1989 No 661, Schedule II, Part b

    Google Scholar 

  35. Gould IM, Jason AC, Milne K (1989) Use of the Malthus microbial-growth analyzer to study the post-antibiotic effect of antibiotics. J Antimicrob Chemother 24: 523 - 531

    Article  CAS  Google Scholar 

  36. Andrade NJ, Bridgeman TA, Zottola EA (1998) Bacteriocidal activity of sanitizers against Enterococcus faecium attached to stainless steel as determined by plate count and impedance methods. J Food Prot 61: 833 - 838

    CAS  Google Scholar 

  37. Owens JD, Thomas DS, Thompson PS, Timmerman JW (1989) Indirect conductimetry: a novel approach to the conductimetric measurement of conductivity changes. Lett Appl Microbiol 9: 245 - 249

    Article  CAS  Google Scholar 

  38. Giaever I, Keese CR (1984) Monitoring fibroblast behaviour in tissue culture with an applied electric field. Proc Natl Acad Sci USA 81: 3761 - 3764

    Article  CAS  Google Scholar 

  39. Giaever I, Keese CR (1993) A morphological biosensor for mammalian cells. Nature 366: 591 - 592

    Article  CAS  Google Scholar 

  40. Giaever I, Keese CR (1986) Use of electric fields to monitor the dynamical aspect of cell behaviour in tissue culture. IEEE Trans Biomed Eng 33: 242 - 247

    Article  CAS  Google Scholar 

  41. Giaever I, Keese CR (1989) Fractal motion of mammalian cells. Physica D 28: 128 - 133

    Article  Google Scholar 

  42. Lo CM, Keese CR, Giaever I (1993) Monitoring motion of confluent cells in tissue culture. Exp Cell Res 204: 102 - 109

    Article  CAS  Google Scholar 

  43. Lo CM, Keese CR, Giaever I (1994) pH changes in pulsed CO2 incubators cause periodic changes in cell morphology. Exp Cell Res 213: 391 - 397

    Google Scholar 

  44. Ghosh PM, Keese CR, Giaever I (1994) Morphological response of mammalian cells to pulsed ac fields. Bioelectrochem Bioenerg 33: 121 - 133

    Article  Google Scholar 

  45. DePaola N, Phelps JE, Florez L, Keese CR, Minnear FL, Giaever I, Vincent P (2001) Electrical impedance of cultured endothelium under fluid flow. Ann Biomed Eng 29: 648 - 656

    Article  CAS  Google Scholar 

  46. Kowolenko M, Keese CR, Lawrence DA, Giaever I (1990) Measurement of macrophage adherence and spreading with weak electric fields. J Immunol Methods 127: 71 - 77

    Article  CAS  Google Scholar 

  47. Tiruppathi C, Malik AB, Delvecchio PJ, Keese CR, Giaever I (1992) Electrical method for detection of endothelial-cell shape change in real-time assessment of endothelial barrier function. Proc Natl Acad Sci USA 89: 7919 - 7923

    Article  CAS  Google Scholar 

  48. Moy AB, Van Engelenhoven J, Bodmer J, Kamath J, Keese C, Giaever I, Shasby S, Shasby DM (1996) Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces. J Clin Invest 97: 1020 - 1027

    Article  CAS  Google Scholar 

  49. Lo CM, Keese CR, Giaever I (1995) Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys J 69: 2800 - 2807

    Article  CAS  Google Scholar 

  50. Smith TJ, Wang HS, Hogg MG, Henrikson RC, Keese CR, Giaever I (1994) Prostaglandin E2 elicits a morphological change in cultured orbital fibroblasts from patients with Graves ophthalmopathy. Proc Nall Acad Sci USA 91: 5094 - 5098

    Article  CAS  Google Scholar 

  51. Pei ZD, Keese CR, Giaever I, Kurzawa H, Wilson DE (1994) Effect of the pSV2-neo plasmid on NIH 3T3 cell motion detected electrically. Exp Cell Res 212: 225 - 229

    Article  CAS  Google Scholar 

  52. Noiri E, Hu Y, Bahou WF, Keese CR, Giaever I, Goligorsky MS (1997) Permissive role of nitric oxide in endothelin-induced migration of endothelial cells. J Biol Chem 272: 17471752

    Google Scholar 

  53. Connolly P, Clark P, Curtis ASG, Dow JAT, Wilkinson CDW (1990) An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens Bioelectron 5: 223 - 234

    Article  CAS  Google Scholar 

  54. Lind R, Connolly P, Wilkinson CDW, Breckenridge LI, Dow JAT (1991) Single cell mobility and adhesion monitoring using extracellular electrodes. Biosens Bioelectron 6: 359367

    Google Scholar 

  55. Breckenridge LJ, Wilson RIA, Connolly P, Curtis ASG, Dow JAT, Blackshaw SE, Wilkinson CDW (1995) Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. J Neurosci Res 42: 266 - 276

    Article  CAS  Google Scholar 

  56. Hagedorn R, Fuhr G, Lichtwardtzinke K, Richter E, Hornung J, Voigt A (1995) Characterization of cell movement by impedance measurement on fibroblasts grown on perforated Si membranes. BBA-Mol Cell Res 1269: 221 - 232

    Google Scholar 

  57. Wegener J, Sieber M, Galla HJ (1996) Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. J Biochem Biophys Methods 32: 151 - 170

    Article  CAS  Google Scholar 

  58. Ehert R, Baumann W, Brischwein M, Scwinde A, Stegbauer K, Wolf B (1997) Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens Bioelectron 12: 29 - 41

    Article  Google Scholar 

  59. Luong JHT, Habibi-Rezaei M, Meghrous J, Xiao C, Male KB, Kamen A (2001) Monitoring motility, spreading and mortality of adherent insect cells using an impedance sensor. Anal Chem 73: 1844 - 1848

    Article  CAS  Google Scholar 

  60. Zou F, Thierry D, Isaacs HS (1997) A high-resolution probe for localized electrochemical impedance spectroscopy measurements. J Electrochem Soc 144: 1957 - 1965

    Article  CAS  Google Scholar 

  61. Krause S, Talabani H, Xu M, Moritz W, Griffiths J (2002) Scanning photoinduce4 impedance microscopy - an impedance-based imaging technique. Electrochim Acta 47: 21432148

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farace, G., Vadgama, P. (2004). Bioanalytical Application of Impedance Analysis: Transducing in Polymer-Based Biosensors and Probes for Living Tissues. In: Mirsky, V.M. (eds) Ultrathin Electrochemical Chemo- and Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05204-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05204-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05961-2

  • Online ISBN: 978-3-662-05204-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics