Skip to main content

Assimilation of Radar Data in Numerical Weather Prediction (NWP) Models

  • Chapter
Weather Radar

Abstract

Radar data have exciting potential for improving forecasts from operational numerical weather prediction (NWP) models. This potential, already partially realised, arises from a combination of developments. NWP models of the European National Meteorological Services (NMS) are now running routinely at the 10 km grid scale and in a few years will be moving to resolutions of the order of 2 km. Such high resolution models require correspondingly high resolution wind and moisture data for initialisation, which radar networks are well placed to deliver. Secondly, NWP data assimilation techniques have advanced considerably in the 1990s, with the arrival of techniques capable of extracting information from time sequences of observations only indirectly related to model prognostic variables. The first decade of the twenty-first century is likely to see further improvements in computing power, microphysical parametrisation and assimilation methods which will enable better exploitation of the information available from weather radars. Thirdly, developments in radar networking and processing around Europe are beginning to reach a maturity which makes feasible the routine operational delivery of quality controlled radar information of an accuracy sufficient for worthwhile NWP assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberoni, P.P., P. Mezzasalma, S. Costa, T. Paccagnella, P. Patruno, and D. Cesari, 2000: Doppler radar wind data assimilation in mesoscale analysis. Phys. Chem. Earth (B), 25, 1263–1266.

    Article  Google Scholar 

  2. Albers, S.C., 1995: The LAPS wind analysis. Weather and Forecasting, 10, 34 2352.

    Google Scholar 

  3. Albers, S.C., J.A. McGinley, D.L. Birkenheuer and J.R. Smart, 1996: The local analysis and prediction system (LAPS): analysis of clouds, precipitation and temperature. Weather and Forecasting, 11, 273–287.

    Article  Google Scholar 

  4. Aonashi, K., 1993: An initialization method to incorporate precipitation data into a mesoscale numerical weather prediction model. J. Meteorol. Soc. Japan, 71, 393406.

    Google Scholar 

  5. Bao, J.W. and Y.-H. Kuo: 1995. On-off switches in the adjoint method: step functions. Mon. Weather Rev., 123, 1589–1594.

    Article  Google Scholar 

  6. Benjamin, S.G., K.A. Brewster, R. Brummer, B.F. Jewett, T.W. Schlatter, T.L. Smith, and P.A. Stamus,1991: An isentropic meso-scale analysis system and its sensitivity to aircraft and surface observations. Mon. Weather Rev., 117, 1586 1603.

    Google Scholar 

  7. Bielli, S. and F. Roux, 1999: Initialization of a cloud-resolving model with airborne Doppler radar observations of an oceanic tropical convective system. Mon. Weather Rev., 127, 1038–1055.

    Article  Google Scholar 

  8. Brewster, K., 1996: Implementation of a Bratseth analysis scheme including Doppler radar. Proc. 15th Conf. Weather Anal. Forecasting, AMS, 1996, pp. 9295.

    Google Scholar 

  9. Cartwright, T.J. and P.J. Ray, 1999: Radar-derived estimates of latent heating in the subtropics. Mon. Weather Rev., 127, 726–742.

    Article  Google Scholar 

  10. Collins, W.G., 2001: The quality control of Velocity Azimuth Display (VAD) Winds at the National Centers for Environmental Prediction. Proc. 11th Symp. Meteorol. Observations Instrum., AMS, pp. 317–320.

    Google Scholar 

  11. Daley, R.: Atmospheric Data Analysis. Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  12. Donner, L., 1988: An initialization for cumulus convection in numerical weather prediction models. Mon. Weather Rev., 116, 377–385.

    Article  Google Scholar 

  13. Ducrocq, V., J. Lafore, J. Redelsperger, and F. Orain, 2000: Initialisation of a fine scale model for convective system prediction: A case study. Q. J. R. Meteorol. Soc., 126, 3041–3066.

    Article  Google Scholar 

  14. Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Weather Rev., 106, 587–602.

    Article  Google Scholar 

  15. Golding, B.W., 1998: Nimrod: a system for generating automated very short range forecasts. Meteorol. Appl. 5, 1–16.

    Article  Google Scholar 

  16. Gregoric, G., 2001: Diagnostics of deep convection using radar data and mesoscale numerical model. Proc. 30th Conf. Radar Meteorol., AMS, pp. 177–178.

    Google Scholar 

  17. Guo,Y.-R., Y.-H. Kuo, J. Dudhia, D. Parsons and C. Rocken: 2000: Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon. Weather Rev., 128, 619–643.

    Article  Google Scholar 

  18. Haase, G., 2002: A physical initialization algorithm for non-hydrostatic weather prediction models using radar derived rain rates. Ph.D. Thesis, Meteorologisches Institut der Universität Bonn.

    Google Scholar 

  19. Hane, C.E and P.S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci., 42, 18–35.

    Article  Google Scholar 

  20. Harrison, D.L., S.J. Driscoll, and M. Kitchen, 2000: Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorol. Appl., 6, 135-144.

    Google Scholar 

  21. Ishikawa, Y., 2002: ‘Meso-scale analysis.’ In: ‘Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Agency’, JMA pp. 26-31.

    Google Scholar 

  22. Jones, C.D. and B. Macpherson, 1997: A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Meteorol. Appl., 4, 269-277.

    Google Scholar 

  23. Kapitza, H., 1991: Numerical experiments with the adjoint of a non-hydrostatic mesoscale model. Mon. Weather Rev., 119, 2993-3011.

    Google Scholar 

  24. Krishnamurti, T.N., J. Xue, H.S. Bedi, K. Ingles and D. Oosterhof., 1991: Physical initialization for numerical weather prediction over the tropics. Tellus, 43AB, 5381.

    Google Scholar 

  25. Krishnamurti, T.N., H.S. Bedi and K. Ingles, 1993: Physical initialization using SSM/I rain rates. Tellus, 45A, 247–269.

    Article  Google Scholar 

  26. Lin, C.-L., T. Chai, and J. Sun, 2000: Adjoint retrieval of wind and temperature fields from a simulated convective boundary layer. Proc. 14th Symp. Boundary Layer Turbulence, AMS, pp. 106–107.

    Google Scholar 

  27. Lin, Y., M.E. Baldwin, K.E. Mitchell, E. Rogers and G.J. DiMego, 2001: Spring 2001 changes to the NCEP Eta Analysis and Forecast System: assimilation of observed precipitation. Proc. 18th Conf. Weather Anal. Forecasting and 14th Conf. Numerical Weather Prediction, Fort Lauderdale, FL, AMS, pp. J92–J95.

    Google Scholar 

  28. Lin, Y., P.S. Ray and K.W. Johnson, 1993: Initialization of a modeled convective storm using Doppler radar-derived fields. Mon. Weather Rev., 121, 2757 2775.

    Google Scholar 

  29. Lindskog, M., H. Järvinen, and D.B. Michelson, 2000: Assimilation of radar radial wind in the HIRLAM 3D-Var. Phys. Chem. Earth (B), 25, 1243–1250.

    Article  Google Scholar 

  30. Lindskog, M., H. Järvinen, and D.B. Michelson, 2002: Development of Doppler radar wind data assimilation for the HIRLAM 3D-Var. HIRLAM Technical Report 52, HIRLAM-5 Project.

    Google Scholar 

  31. Liou, Y.-C., 1990: Retrieval of three-dimensional wind and temperature fields from one component wind data by using the four-dimensional data assimilation technique. Master’s thesis, University of Oklahoma.

    Google Scholar 

  32. Macpherson, B., 2000: Assimilation of precipitation in the Met Office Mesoscale Model. Proc. ECMWF/EuroTRMM Workshop on Assimilation of Clouds and Precipitation, pp 405–414.

    Google Scholar 

  33. Macpherson, B., 2001: Operational experience with assimilation of rainfall data in the Met Office Mesoscale Model. Meteorol. Atmos. Phys., 76, 3–8.

    Article  Google Scholar 

  34. Manobianco, J., S. Koch, V.M. Karyampudi and A.J. Negri: 1994: The impact of assimilating satellite derived precipitation rates on numerical simulations of the ERICA IOP 4 cyclone. Mon. Weather Rev., 122, 341–365.

    Article  Google Scholar 

  35. Marecal, V. and J.-F. Mahfouf, 2000: Four dimensional variational assimilation of total column water vapour in rainy areas. Technical Memorandum 314, ECMWF.

    Google Scholar 

  36. Matsumura, T., I. Takano, K. Aonashi and T. Nitta, 1997: Improvement of spin-up of precipitation calculation with use of observed rainfall in the initialization scheme. In: Numerical Methods in Atmospheric and Ocean Modelling, Canadian Meteorological and Oceanographic Society/NCR Research Press, pp. 353368.

    Google Scholar 

  37. McGinley, J., 1989: The local analysis and prediction system. Proc. 12th Conf. Weather Anal. Forecasting, AMS, pp. 15–20.

    Google Scholar 

  38. Meetschen, D., S. Crewell, P. Gross, G. Haase, C. Simmer and A. v. Lammeren, 2000: Simulation of weather radar products from a mesoscale model. Phys. Chem. Earth (B), 25, 1257-1261.

    Google Scholar 

  39. Parrish, D.F. and J. Purser, 1998: Anisotropic covariances in 3D-Var: Application to hurricane doppler radar observations. Proc. HIRLAM 4 Workshop on Variational Analysis in Limited Area Models, Météo-France, Toulouse.

    Google Scholar 

  40. Rinne, J. and C. Fortelius, 2001: Data assimilation and problems in the quality control of Doppler winds. Proc. 30th Conf. Radar Meteorol., AMS, pp. 182–183.

    Google Scholar 

  41. Rossa, A.M., 2000: The COST 717 action: Use of radar observations in hydrological and NWP models. Phys. Chem. Earth (B), 25, 1221-1224.

    Google Scholar 

  42. Schlatter, T., 2000: Variational assimilation of meteorological observations in the lower atmosphere: a tutorial on how it works. J. Atmos. Solar Terrestrial Phys., 62, 1057-1070.

    Google Scholar 

  43. Sun, J. and N.A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint: Part I. Model development and simulated data experiments. J. Atmos. Sci., 54, 1642-1661.

    Google Scholar 

  44. Sun, J. and N.A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint: Part II. Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835-852.

    Google Scholar 

  45. Treadon, R.E., 1996: Physical initialization in the NMC global data assimilation system. Meteorol. Atmos. Phys., 60, 57-86.

    Google Scholar 

  46. Wang, W. and T.T. Warner, 1988: Use of four-dimensional data assimilation by Newtonian relaxation and latent-heat forcing to improve a mesoscale model precipitation forecast: A case study. Mon. Weather Rev., 116, 2593-2613.

    Google Scholar 

  47. Wilson, J., N.A. Crook and C. Mueller, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteorol. Soc., 79, 2079-2099.

    Google Scholar 

  48. Wolfsberg, D., 1987: Retrieval of three-dimensional wind and temperature fields from single-Doppler radar data. CIMMS Report No. 84, Cooperative Institute for Mesoscale Meteorological Studies.

    Google Scholar 

  49. Wu, B., J. Verlinde and J. Sun, 2000: Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud. J. Atmos. Sci., 57, 262-283.

    Google Scholar 

  50. Xu, Q., 1996: Generalized adjoint for physical processes with parameterized discontinuites. Part I: Basic issues and heuristic examples. J. Atmos. Sci., 53, 1123-1142.

    Google Scholar 

  51. Xue, M., D. Wang, D. Hou, K. Brewster, and K.K. Droegemeier, 1998: Prediction of the 7 May 1995 squall line over the central U.S. with intermittent data assimilation. Proc. 12th Conf. Numerical Weather Prediction, AMS, pp. 191–194.

    Google Scholar 

  52. Zhang, J., 1999: Moisture and diabatic initialisation based on radar and satellite observations. Ph.D. Thesis, University of Oklahoma.

    Google Scholar 

  53. Zhang, J., F. Carr and K. Brewster, 1998: ADAS cloud analysis. Proc. 12th Conf. Numerical Weather Prediction, AMS, pp. 185–188.

    Google Scholar 

  54. Zou, X., I. Navon and J. Sela,1993: Variational data assimilation with moist threshold processes using the NMC spectral model. Tellus, 45A, 370–387.

    Google Scholar 

  55. Zou, X. and Y.-H. Kuo, 1996: Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Mon. Weather Rev., 124, 2859-2882.

    Google Scholar 

  56. Zou, X., 1997: Tangent linear and adjoint of ‘on-off’ processes and their feasibility for use in 4-dimensional variational data assimilation. Tellus, 49A, 3–31.

    Article  Google Scholar 

  57. Zupanski, D. and F. Mesinger, 1995: Four-dimensional variational assimilation of precipitation data. Mon. Weather Rev., 123, 1112–1127.

    Article  Google Scholar 

  58. Zupanski, M., D. Zupanski, D.F. Parrish, E. Rogers and G. DiMego, 2002: Four-dimensional variational data assimilation for the Blizzard of 2000. Mon. Weather Rev., 130, 1967–1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Macpherson, B. et al. (2004). Assimilation of Radar Data in Numerical Weather Prediction (NWP) Models. In: Meischner, P. (eds) Weather Radar. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05202-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05202-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05561-4

  • Online ISBN: 978-3-662-05202-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics