Tests of Macular Function

  • Eberhard Zrenner
  • Mathias W. Seeliger
  • Jens Reinhard


The human macula with its central foveola is the most powerful human organ for spatial resolution and object recognition; this ability is based on the high density of photoreceptors (on average more than 200,000 cones/mm2). As shown in ■ Fig. 7.1, visual acuity for a single optotype with optimal conditions for refraction is closely linked with cone density (Curcio et al. 1990). In order to allow for comfortable reading, the visual field has to span a visual angle of at least 4° horizontally and 2° vertically. To read newsprint without magnifying aids a visual acuity of 0.4 and a cone density of about 20,000/mm2 are necessary, as also shown in ■ Fig. 7.1. If cones are lost, for example as the result of an acquired or hereditary retinal disease, the following functions — related to the role of cones in the retinal center and their distribution — are affected:
  • Visual acuity, because of decreased cone density

  • Reading performance, when scotomata occur in the minimal field required for reading (see above)

  • Visual field, because of the local loss of small cone populations

  • Increment threshold loss for central vision, because of reduced spatial integration of bright areas

  • Color vision discrimination, because of the thinned mosaic of short, middle, and long wavelength sensitive cones

  • Contrast vision, because of disintegration of receptive fields

These functional losses determine the kind of subjective and objective function testing that are optimally suited for diseases of the macula.


Visual Acuity Scanning Laser Ophthalmoscope Central Scotoma Central Visual Field Macular Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aulhorn E, Durst W (1987) Die Bedeutung des blinden Flecks für die klinische Diagnostik. Fortschr Ophthalmol 84: 631–634PubMedGoogle Scholar
  2. Curcio CA, Sloan KN, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Compl Neurol 292: 497–523CrossRefGoogle Scholar
  3. Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20: 4: 531–561PubMedCrossRefGoogle Scholar
  4. Hood DC (2000). Assessing retinal function with the multifocal technique. Prog Retin Eye Res 19: 607–646PubMedCrossRefGoogle Scholar
  5. Kretschmann U, Seeliger M, Ruether K, Usui T,Zrenner E (1998) Spatial cone activity distribution in diseases of the posterior pole determined by multi-focal ERG. Vision Res 38: 3817–3828PubMedCrossRefGoogle Scholar
  6. Marmor MF, Zrenner E (1999) Standard for clinical electroretinography (1999 up date). Doc Ophthalmol 97: 143–156CrossRefGoogle Scholar
  7. Marmor MF,Hood D, Keating D, Kondo M, Seeliger M,MiyakeY (2001) Guidelines for basic multifocal electroretinography (mfERG). Informational Society for Clinical Electroretinography of Vision (in press) (see Scholar
  8. Rohrschneider K, Fendrich T, Becker M, Krastel H, Kruse FE, Voelcker HE (1995) Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy. Graefes Arch Clin Exp Ophthalmol 233: 743–749PubMedCrossRefGoogle Scholar
  9. Schiefer U, Stercken-Sorrenti G, Dietrich TJ, Friedirch M, Benda N (1996) Fundus-orientierte Perimetrie–Evaluation eines neuen Gesichtsfeld-Utersuchungsverfahrens bezüglich der Detektion von Angioskotomen. Klein Monatsbl Augenheilkd 209: 62–71CrossRefGoogle Scholar
  10. Schiefer U, Benda N, Dietrich TJ, Selig B, Hofmann C, Schiller J (1999) Angioscotoma detection with fundus-oriented perimetry. A study with dark and bright stimuli of different sizes.Vision Res 39: 1897–1909Google Scholar
  11. Seeliger MW, Narfström K, Reinhard J, Zrenner E, Sutter E (2000) Continuous monitoring of the stimulated area in multifocal ERG. Doc Ophthalmol 100: 67–184CrossRefGoogle Scholar
  12. Seeliger MW, Jurklies B, Kellner U, Palmowski A, Bach M, Kretschmann U (2001) Multifokale Elektroretinographie (mfERG).Ophthalmologe 98 (in press)Google Scholar
  13. Sunness JS, Schuchard RA, Shen N, Rubin GS, Dagnelie G, Haselwood DM (1995) Landmark-driven fundus perimetry using the scanning laser ophthalmoscope. Invest Ophthalmol Vis Sci 36 (9): 1863–1874PubMedGoogle Scholar
  14. Sunness JS, Applegate CA, Haselwood D, Rubin GS (1996) Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age-related macular degeneration and Stargardt disease. Ophthalmology 103: 1458–1466PubMedGoogle Scholar
  15. Sutter EE,Tran D (1992) The field topography of ERG components in man.I.The photopic luminance response.Vis Res 32: 433–446PubMedCrossRefGoogle Scholar
  16. Tornow RP, Beuel S,Zrenner E (1997), Modifying a Rodenstock scanning laser ophthalmoscope for imaging densitometry. Appl Optics 36, 22: 5621–5629CrossRefGoogle Scholar
  17. Tornow RP, Stilling R,Zrenner E (1999) Scanning laser densitometry and color perimetry demonstrate reduced photopigment density and sensitivity in two patients with retinal degeneration.Vis Res 39: 3630–3641PubMedCrossRefGoogle Scholar
  18. Trauzettel-Klosinski S, Teschner C, Tornow R-P, Zrenner E (1994) Reading strategies in normal subjects and in patients with macular scotoma–assessed by two new methods. Neuroophthalmology 14: 15–30CrossRefGoogle Scholar
  19. Wertheim T (1894) Über die indirekte Sehschärfe. Z Psychol 7: 172–187Google Scholar
  20. Zrenner E (1983) Grundlagen elektrophysiologischer Untersuchungsmethoden in der Augenheilkunde. In: Lund, Waubke (eds) Bücherei des Augenarztes,vol 97: Degenerative Erkrankungen des Auges. Enke, Stuttgart, pp 129–140Google Scholar
  21. Zrenner E (1985) Farbsinnprüfungen: Grundlagen, Meg-verfahren und Anwendungen bei angeborenen und erworbenen Farbsinnstörungen. In: Lund, Waubke (eds) Bücherei des Augenarztes, vol 106: Die Augenerkrankungen im Kindesalter. Enke, Stuttgart, pp 263–286Google Scholar
  22. Zrenner E (1990) The physiological basis of the pattern electroretinogram.Prog Retin Res 9: 427–464CrossRefGoogle Scholar
  23. Zrenner E (1998a) Dysfunktion der Zapfen und Stäbchen. In: Huber, Kömpf (eds) Klinische Neuroophthalmologie. Thieme, Stuttgart, pp 239–244Google Scholar
  24. Zrenner E (1998b) Differentialdiagnostische Strategien bei unklaren Sehstörungen. In: Huber, Kömpf (eds) Klinische Neuroophthalmologie. Thieme, Stuttgart, pp 229–233Google Scholar
  25. Zrenner E, Kohen L, Krastel H (1986) Einschränkungen der Netzhautfunktion bei Konduktorinnen der Chorioideremie. Fortschr Ophthalmol 83: 602–608PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Eberhard Zrenner
  • Mathias W. Seeliger
  • Jens Reinhard

There are no affiliations available

Personalised recommendations