Advertisement

Histopathology

  • Daniel Pauleikhoff
  • Pia Hermans
  • Frank G. Holz
  • Alan C. Bird

Abstract

Bruch’s membrane, the boundary layer between the retinal pigment epithelium and the choriocapillaris, plays a central role in age-related macular changes. The development of individually characteristic age-related changes with specific deposits (drusen) in Bruch’s membrane indicates risk of sight-threatening complications in age-related macular degeneration (AMD).

Keywords

Retinal Pigment Epithelium Retinal Pigment Retinal Pigment Epithelial Cell Polypoidal Choroidal Vasculopathy Choroidal Neovascular Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer DB, Gardiner TA (1981a) Morphologic, fluorescein angiographic, and light microscopic features of experimental choroidal neovascularization. Am J Ophthalmol 91: 297–311Google Scholar
  2. Archer DB, Gardiner TA (1981b) Electron microscopic features of experimental choroidal neovascularization. Am J Ophthalmol 91: 433–457Google Scholar
  3. Barondes MJ, Pauleikhoff D, Chisholm IH, Minassian D, Bird AC (1990) Bilaterality of drusen. Br 1 Ophthalmol 74: 180–182CrossRefGoogle Scholar
  4. Bird AC (1991) Pathogenesis of retinal pigment epithelial detachment in the elderly: the relevance of Bruch’s membrane change. Eye 5: 1–12PubMedCrossRefGoogle Scholar
  5. Bird AC (1993) Choroidal neovascularization in age-related macular disease. Br J Ophthalmol 77: 614–615PubMedCrossRefGoogle Scholar
  6. Bird AC, Marshall J (1986) Retinal pigment epithelial detachments in the elderly. Trans Opthalmol Soc UK 105: 674–682Google Scholar
  7. Borges JM,Tso MOM (1988) Atrophic form of age-related macular degeneration: a clinicopathological study. Exp Ophthalmol (Coimbra) 14: 41–45Google Scholar
  8. Bressler NM, Bressler SB, Fine SL (1988a) Age-related macular degeneration. Sury Ophthalmol 32: 375–413CrossRefGoogle Scholar
  9. Bressler NM, Bressler SB, Seddon 1M, Gragoudas ES, Jacobson LP (1988b) Drusen characteristics in patients with exudative versus non-exudative age-related macular degeneration. Retina 8: 109–114Google Scholar
  10. Bressler NM, Bressler SB, Gragoudas ES (1987) Clinical characteristics of choroidal neovascular membranes. Arch Ophthalmol 105: 209–13PubMedCrossRefGoogle Scholar
  11. Burns RP (1980) Clinico-morphologic correlations of drusen of Bruch’s membrane. Trans Am Ophthalmol Soc 68: 206–225Google Scholar
  12. Campochiaro PA, Jerdan IA, Glaser BM (1986) The extracellular matrix of human retinal pigment epithelial cells in vivo and its synthesis in vitro. Invest Ophthalmol Vis Sci 27: 1615–1621PubMedGoogle Scholar
  13. Capon MRC, Marshall J, Krafft JI, Bird AC, Alexander RA, Hiscott PS (1989) Sorsby’s fundus dystrophie:a light and electron microscopic study. Ophthalmology 96: 1769–1777PubMedGoogle Scholar
  14. Casswell AG, Kohnen D, Bird AC (1985) Retinal pigment epithelial detachments in the elderly:classification and outcome. Br J Ophthalmol 69: 397–403PubMedCrossRefGoogle Scholar
  15. Chen JC, Fitzke FW, Pauleikhoff D, Bird AC (1992) Functional loss in age-related Bruch’s membrane change with choroidal perfusion defects. Invest Ophthalmol Vis Sci 33: 334–340PubMedGoogle Scholar
  16. Chuang EL, Bird AC (1988) The pathogenesis of tears of the retinal pigment epithelium. Am J Ophthalmol 105: 285290Google Scholar
  17. Coffey AJH, Brownstein S (1986) The prevalence of macular drusen in post mortem eyes. Am J Ophthalmol 102: 164171Google Scholar
  18. Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117: 329–339PubMedGoogle Scholar
  19. Curcio CA, Baily T, Knuth HS, Millican CL (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci 42: 265–74PubMedGoogle Scholar
  20. Dastgheib K, Green RG (1994) Granulomatous reaction to Bruch’s membrane in age-related macular degeneration. Arch Ophthalmol 112: 813–818PubMedCrossRefGoogle Scholar
  21. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36: 718–729PubMedGoogle Scholar
  22. Dorey CK,Wu G,Ebenstein D,Garsd A,WeiterJJ (1989) Cell loss in the aging retina: relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30: 1691–1699Google Scholar
  23. Farkas TG (1971) Drusen of the retinal pigment epithelium. Sury Ophthalmol 16: 75–87Google Scholar
  24. Feeney-Burns L, Ellersieck MR (1985) Age-related changes in the ultrastructure of Bruch’s membrane. Am J Ophthalmol 100: 686–697PubMedGoogle Scholar
  25. Feeney-Burns L, Burns RP, Gao C-L (1990) Age-related macular changes in humans over 90 years old. Am J Ophthalmol 109: 265–278PubMedGoogle Scholar
  26. Fisher RF (1982) The water permeability of basement membrane under increasing pressure: evidence for a new theory of permeability. Proc R Soc Lond B 216: 475496Google Scholar
  27. Foulds WS (1976) Clinical significance of trans-scleral fluid transfer. Doyne Memorial Lecture. Trans Ophthalmol Soc UK 96: 290–308PubMedGoogle Scholar
  28. Gass JD (1973) Drusen and disciform macular detachment and degeneration. Arch Ophthalmol 90: 206–217PubMedCrossRefGoogle Scholar
  29. Gass JDM (1967) Pathogenesis of disciform detachment of the neuroepithelium 3 Senile disciform macular degeneration. Am J Ophthalmol 63: 617–644Google Scholar
  30. Green WR, Enger C (1993) Age-related macular degeneration histopathologic studies. (The 1992 Lorenz E Zimmermann Lecture) Ophthalmology 100: 1519–1935Google Scholar
  31. Green WR, McDonnell PJ,Yeo JH (1985) Pathologic features of senile macular degeneration. Ophthalmology 92: 615–627Google Scholar
  32. Grossniklaus HE, Gass JDM (1998) Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes. Am J Ophthalmol 126: 59–69PubMedCrossRefGoogle Scholar
  33. Grossniklaus HE, Green G (1998) The Submacular Surgery Trials Research Group 1998: histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Arch Ophthalmol 116: 745–749PubMedGoogle Scholar
  34. Grossniklaus HE, Hutchinson AK, Capone A, Woolfson J, Lambert HM (1994) Clinicopathologic features of surgically excised choroidal neovascular membranes. Ophthalmology 101: 1099–1111PubMedGoogle Scholar
  35. Guymer R, Luthert P, Bird AC (1998) Changes in Bruch’s membrane and related structures with age. Prog Retinal Eye Res 18: 59–90CrossRefGoogle Scholar
  36. Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te-Koppele JM, Miyata T, Hjelmeland LM (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40: 775–779PubMedGoogle Scholar
  37. Hao W, Wenzel A, Obin MS, Chen CK, Brill E, Krasnoperova NV, Eversole-Cire P, Kleyner Y, Taylor A, Simon MI, Grimm C, Reme CE, Lem J (2002) Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat Genet 32: 254–260PubMedCrossRefGoogle Scholar
  38. Hermans P, Lommatzsch A, Pauleikhoff D (2002) Angiographisch-histologische Korrelation der exsudativen AMD.Ophthalmologe (in press)Google Scholar
  39. Hogan MJ (1965) Symposium:macular diseases, pathogenesis: electron microscopy of Bruch’s membrane. Trans Am Acad Ophthalmol Otolaryngol 69: 683–690PubMedGoogle Scholar
  40. Holz FG, Sheraidah G, Pauleikhoff D, Bird AC (1994) Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch Ophthalmol 112: 402–406PubMedCrossRefGoogle Scholar
  41. Howard EW, Benton R, Ahern-Moore J,Tomasek JJ (1996) Cellular contraction of collagen lattices is inhibited by nonenzymatic glycation. Exp Cell Res 228: 132Google Scholar
  42. Hyman L, Schachat AP, He Q, Leske C (2000) Hypertension, cardiovascular disease, and age-related macular degeneration. Arch Ophthalmol 118: 351–358PubMedGoogle Scholar
  43. Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116: 1629–1632PubMedGoogle Scholar
  44. Ishibashi T, Patterson R, Ohnishi Y, Inomata H, Ryan SJ (1986) Formation of drusen in the human eye. Am J Ophthalmol 101: 342–353PubMedGoogle Scholar
  45. Ishibashi T, Sorgente N, Patterson R, Ryan SJ (1986) Pathogenesis of drusen in the primate. Invest Ophthalmol Vis Sci 27: 84–193Google Scholar
  46. Junius P, Kuhnt H (1926) Die scheibenförmige Entartung der Netzhautmitte.Verlag Karger, Berlin, 5132Google Scholar
  47. Karwatkowski WS, Jeffries TE, Duance VC, Albon J, Bailey Ai, Easty DL (1995) Preparation of Bruch’s membrane and analysis of the age-related changes in the structural collagens. Br J Ophthalmol 79: 944–952CrossRefGoogle Scholar
  48. Killingworth MC, Sarks JP, Sarks SH (1990) Macrophages related to Bruch’s membrane in age-related macular degeneration. Eye 4: 613–621CrossRefGoogle Scholar
  49. Kliffen M, Mooy CM, Luider TM, de Jong PTVM (1994) Analysis of carbohydrate structures in basal laminar deposit in aging human maculae. Invest Opthalmol Vis Sci 35: 2901–2905Google Scholar
  50. Kliffen M, Mooy CM, Luider TM, Huijmans JGM, Kerkvliet S, de Jong PTVM (1996) Identification of glycosaminoglycans in age-related macular deposits. Arch Ophthalmol 114: 1009–1014PubMedCrossRefGoogle Scholar
  51. Krishnamurti U, Rondeau E, Sraer JD, Michael AF, Tsilibary EC (1997) Alterations in human glomerular epithelial cells interacting with nonenzymatically glycosylated matrix.) Biol Chem 272: 27966–27970CrossRefGoogle Scholar
  52. LaCour M (1989) Coupled transport of Na+ and HCO3- across the retinal membrane in frog RPE. In: Zingirian M, Piccolino FC (eds) Retinal pigment epithelium. Kugler, Ghedini Publications, Amsterdam, Berkeley, Milan, S29–32Google Scholar
  53. Lafaut BA, Aisenbrey S, Vanden Broecke C, Krott R, JonescuCuypers CP, Reynders S, Bartz-Schmidt KU (2001) Clinico-pathologic correlation of retinal pigment epithelial tears in exudative age related macular degeneration: pretear, tear and scarred tear. Br J Ophthalmol 85: 454–460PubMedCrossRefGoogle Scholar
  54. Loeffler KU, Lee WR (1986) Basal linear deposits in the human macula. Graefe’s Arch Clin Exp Ophthalmol 224: 493–501CrossRefGoogle Scholar
  55. Macular Photocoagulation Study Group (1991) Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the Macular Photocoagulation Study. Arch Ophthalmol 109: 1242–1257Google Scholar
  56. Marshall GE, Konstas AGP, Reid G, Edwards JG, Lee WR (1994) Collagens in the age-related macula. Graefe’s Arch Clin Exp Ophthalmol 232: 133–140PubMedCrossRefGoogle Scholar
  57. Marshall. J (1987) The ageing retina: physiology and pathology. Eye 1: 282–295PubMedCrossRefGoogle Scholar
  58. Marshall J, Hussain AA, Starita C, Moore DJ, Patmore AL (1998) Aging and Bruch’s membrane. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium: function and disease. Oxford Univ Press, 5669–692Google Scholar
  59. Martinez GS, Campbell A, Reinken J, Allan BC (1982) Prevalence of ocular disease in a population study of subjects 65 years old and older. Am J Ophthalmol 94: 181–189PubMedGoogle Scholar
  60. Miller H, Miller B, Ryan SJ (1986a) Newly-formed subretinal vessels: fine structure and fluorescein leakage. Invest Ophthalmol Vis Sci 27: 204–213PubMedGoogle Scholar
  61. Miller H, Miller B, Ryan SJ (1986b) The role of retinal pigment epithelium in the involution of subretinal neovascularization. Invest Ophthalmol Vis Sci 27: 1644–1652PubMedGoogle Scholar
  62. Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 36: 1290–1297PubMedGoogle Scholar
  63. Müller C, Spital G, Radermacher M, Dohrmann 1, Lommatzsch A, Pauleikhoff D (2002) Pigmentepithelabhebungen bei AMD and “polypoidal choroidal vasculopathy Ophthalmologe 99: 85–89PubMedCrossRefGoogle Scholar
  64. Müller H (1856) Anatomische Beiträge zur Ophthalmologie: 1 Untersuchungen über die Glashäute des Auges, insbesondere die Glaslamelle der Chorioidea and ihre senilen Veränderungen. Arch f Ophthalmol 2: 1–64Google Scholar
  65. Mullins RF, Johnson LV, Anderson DH, Hageman GS (1997) Characterization of drusen associated glycoconjugates. Ophthalmology 104: 288–294PubMedGoogle Scholar
  66. Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB 1 14: 835–846Google Scholar
  67. Mullins RF, Aptsiauri N, Hageman GS (2001) Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis. Eye 15: 390–395PubMedCrossRefGoogle Scholar
  68. Okubo A, Rosa RH, Bunce CV, Alexander RA, Fan JT, Bird AC, Luther PJ (1999)The relationships of age changes in retinal pigment epithelium and Bruch’s membrane. Invest Ophthalmol Vis Sci 40: 443–449Google Scholar
  69. Pauleikhoff D, Barondes MJ, Minassian D, Chisholm IH, Bird AC (1990) Drusen as risk factors in age related macular disease. Am J Ophthalmol 109: 38–43PubMedGoogle Scholar
  70. Pauleikhoff D, Bird AC, OIverJ,Maguire J,Sheriadah G, Marshall J (1990) The correlation of choriocapillaris and Bruch’s membrane changes in aging. 62nd Annual Meeting of the Association for Research in Vision and Ophthalmology, Sarasota, Florida, USA, May 1989. Invest Ophthalmol Vis Sci (Suppl) 31: 47Google Scholar
  71. Pauleikhoff D, Harper A, Marshall J, Bird AC (1990) Aging changes in Bruch’s membrane:a histochemical and morphologic study. Ophthalmology 97: 171–178PubMedGoogle Scholar
  72. Pauleikhoff D, Züls S, Sheraidah GS, Wessing A, Marshall J, Bird AC (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99: 1548–1553PubMedGoogle Scholar
  73. Pauleikhoff D, Sheraidah G, Marshall J, Bird AC, Wessing A (1994) Biochemical and histochemical analysis of age related lipid deposits in Bruch’s membrane. Ophthalmologe 91: 730–734PubMedGoogle Scholar
  74. Pauleikhoff D, Wojteki S, Müller D, Bornfeld N, Heiligenhaus A (2000) Adhesive properties of basal membranes of Bruch’s membrane. Immunohistochemical studies of age-dependent changes in adhesive molecules and lipid deposits. Ophthalmologe 97: 243–250PubMedCrossRefGoogle Scholar
  75. Pauleikhoff D, Löffert D, Spital G, Radermacher M, Dohrmann J, Lommatzsch A, Bird AC (2002) Pigment epithelial detachment in the elderly. Clinical differentiation, natural course and pathogenetic implications. Graefe’s Arch Clin Exp Ophthalmol 240: 533–538PubMedCrossRefGoogle Scholar
  76. Penfold PL, Killingworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefe’s Arch Clin Exp Ophthalmol 223: 69–76PubMedCrossRefGoogle Scholar
  77. Penfold PL, Liew SCK, Madigan MC, Provis,JM (1997) Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Invest Ophthalmol Vis Sci 38: 2125–2133PubMedGoogle Scholar
  78. Penfold PL, Madigan MC,Gillies MC, Provis JM (2001) Immunological and aetiological aspects of macular degeneration. Prog Retinal Eye Res 20 (3): 385–414CrossRefGoogle Scholar
  79. Ramrattan RS, van der SchaftTL, Mooy CM, de Bruijn WC, Mulder PGH, de Jong PTVM (1994) Morphometric analysis of Bruch’s membrane, the choriokapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35: 2857–2864PubMedGoogle Scholar
  80. Rittie L, Berton A, Monboisse JC, Hornebeck W, Gillery P (1999) Decreased contraction of glycated collagen lattices coincides with impaired matrix metalloproteinase production. Biochem Biophys Res Corn 264: 488CrossRefGoogle Scholar
  81. Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol 60: 324–341PubMedCrossRefGoogle Scholar
  82. Sarks SH, van Driel D, Maxwell L, Killingworth M (1980) Softening of drusen and subretinal neovascularization. Trans Ophthalmol Soc UK 100: 414–422PubMedGoogle Scholar
  83. Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye 2: 552–577PubMedCrossRefGoogle Scholar
  84. Sheraidah G, Steinmetz R, Maguire J, Pauleikhoff D, Marshall J, Bird AC (1993) Correlation between lipids extracted from Bruch’s membrane and age. Ophthalmology 100 (1): 4751Google Scholar
  85. Spaide RF, Ho Spaide WC, Browne RW, Armstrong D (1999) Characterization of peroxidized lipids in Bruch’s membrane. Retina 19: 141–147PubMedCrossRefGoogle Scholar
  86. Spital G, Brumm G, Radermacher M, Müller C, Lommatzsch A, Pauleikhoff D (2000) Volumenbestimmung von Pigmentepithelabhebungen bei AMD mittels Laser-Scanning-Tomographie. Ophthalmologe 97: 173–180PubMedCrossRefGoogle Scholar
  87. Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1998) Characteristics of drusen and changes in Bruch’s membrane in eyes with age-related macular degeneration: histological study. Ophthalmologe 95: 73–79PubMedCrossRefGoogle Scholar
  88. Soubrane G, Coscas G, Francais C, Koenig F (1990) Occult sub-retinal new vessels in age-related macular degeneration. Ophthalmology 97: 649–657PubMedGoogle Scholar
  89. Starita C, Hussain AA, Pagliarini S, Marshall J (1996) Hydrodynamics of ageing Bruch’s membrane: implications for macular disease. Exp Eye Res 62: 565–572PubMedCrossRefGoogle Scholar
  90. Starita C, Hussain AA, Patmore A, Marshall J (1997) Localization of the site of major resistance to fluid transport in Bruch’s membrane. Invest Ophthalmol Vis Sci 38 (3): 762–767PubMedGoogle Scholar
  91. Steinberg RH, Miller SS (1979) Transport and membrane properties of the retinal pigment epithelium. In: Zinn KM, Marmor MF (eds) The retinal pigment epithelium. Cambridge, MA, Harvard University Press, 205–225Google Scholar
  92. Tian SF,Toda S,Higashino H,Matsumura S (1996) Glycation decreases the stability of the triple-helical strands of fibrous collagen against proteolytic degradation by pepsin in a specific temperature range. J Biochem (Tokyo) 120: 1153CrossRefGoogle Scholar
  93. van der Schaft TL, de Bruijn WC, Mooy CM, Ketelaars DAM, de Jong PTVM (1991) Is basal laminar deposit unique for age-related macular degeneration? Arch Ophthalmol 109: 420–425PubMedCrossRefGoogle Scholar
  94. van der Schaft TL, Mooy CM, de Bruijn WC, Bosman FT, de Jong PTVM (1994) Immunohistochemical light and electron microscopy of basal laminar deposit. Graefe’s Arch Clin Exp Ophthalmol 232: 40–46PubMedCrossRefGoogle Scholar
  95. Yannuzzi LA, Wong DW, Sforzolini BS et al. (1999) Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch Ophthalmol 117: 1503–1510PubMedCrossRefGoogle Scholar
  96. Young RW (1987) Pathophysiology of the age-related macular degeneration. Sury Ophthalmol 31: 291–306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Daniel Pauleikhoff
  • Pia Hermans
  • Frank G. Holz
  • Alan C. Bird

There are no affiliations available

Personalised recommendations