Atomic Vibrations of Percolating Networks

  • Tsuneyoshi Nakayama
  • Kousuke Yakubo
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 140)


As discussed in detail in Chap. 5, vibrational excitations in fractal networks behave in a different manner from those in conventional disordered systems. These excitations called fractons are characterized by the spectral dimension d s. However, all the results on fractons presented in Chap. 5 are deduced from the scaling assumption (5.8). In order to confirm the results derived from the scaling arguments and clarify the nature of fractons, investigation by computer simulations is crucial. This has become possible recently due to a sharp increase in available computer power together with the development of new algorithms suitable for large-scale computations. These have been a great success in quantitatively describing the dynamics of complex systems.


Atomic Vibration Crossover Frequency Sierpinski Gasket Crossover Region Percolate Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    M. Born, K. Huang: Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954)zbMATHGoogle Scholar
  2. 6.2
    T. Nakayama: Physica A 191, 386 (1992)ADSCrossRefGoogle Scholar
  3. 6.3
    T. Nakayama, K. Yakubo: Phys. Rep. 349, 239 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 6.4
    K. Yakubo, T. Nakayama: Phys. Rev. B 40, 517 (1989)ADSCrossRefGoogle Scholar
  5. 6.5
    T. Terao, T. Nakayama: Phys. Rev. B 53, R2918 (1996)ADSCrossRefGoogle Scholar
  6. 6.6
    S. Alexander, C. Laermans, R. Orbach, H.M. Rosenberg: Phys. Rev. B 28, 4615 (1983)ADSCrossRefGoogle Scholar
  7. 6.7
    A. Aharony, S. Alexander, O. Entin-Wohlman, R. Orbach: Phys. Rev. Lett. 31, 2565 (1985)ADSGoogle Scholar
  8. 6.8
    K. Yakubo, E. Courtens, T. Nakayama: Phys. Rev. B 42, 1078 (1990)ADSCrossRefGoogle Scholar
  9. 6.9
    R. Rammal: J. Phys. (Paris) 45, 191 (1984)MathSciNetCrossRefGoogle Scholar
  10. 6.10
    A. Bunde, H.E. Roman: Philos. Mag. B 65, 191 (1992)CrossRefGoogle Scholar
  11. 6.11
    S. Havlin, A. Bunde: Physica D 38, 184 (1989)MathSciNetADSCrossRefGoogle Scholar
  12. 6.12
    K. Yakubo, T. Nakayama: J. Phys. Soc. Jpn. 58, 1504 (1989)ADSCrossRefGoogle Scholar
  13. 6.13
    T. Nakayama: Jpn. J. Appl. Phys. 34, 2519 (1995)ADSCrossRefGoogle Scholar
  14. 6.14
    P.N. Keating: Phys. Rev. B 152, 774 (1996)Google Scholar
  15. 6.15
    Y. Kantor, I. Webman: Phys. Rev. Lett. 52, 1891 (1984)ADSCrossRefGoogle Scholar
  16. 6.16
    S. Feng: Phys. Rev. B32, 510 (1985)MathSciNetADSCrossRefGoogle Scholar
  17. 6.17
    S. Feng: Phys. Rev. B32, 5793 (1985)ADSCrossRefGoogle Scholar
  18. 6.18
    P.G. de Gennes: J. Phys. (Paris) Lett. 37, L1 (1976)ADSCrossRefGoogle Scholar
  19. 6.19
    K. Yakubo, K. Takasugi, T. Nakayama: J. Phys. Soc. Jpn. 59, 1909 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tsuneyoshi Nakayama
    • 1
  • Kousuke Yakubo
    • 1
  1. 1.Department of Applied Physics, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations