Advertisement

Multifractals

  • Tsuneyoshi Nakayama
  • Kousuke Yakubo
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 140)

Abstract

In previous chapters we discussed geometrical properties of fractals characterized by fractal dimensions D f . However, the fractal dimension Df is not sufficient to describe all features of complex structures or distributions. For example, a distribution of mineral resources on earth is one such case. Gold is found in high densities only at a few rich places, whereas an extremely small amount of gold exists almost everywhere. Assume that areas with gold density larger than ρ1 are colored in red on a world atlas, and that areas with gold density larger than ρ2 (< ρ1) are colored in blue. Even if the distribution of red portions on the atlas is characterized by a fractal dimension D f , the fractal dimension of the blue region might differ from D f .It can be understood intuitively that the fractal dimension of the red region with very large ρ1 is close to zero, while the dimensionality of the blue region with very small ρ2 is almost two [4.1].

Keywords

Fractal Dimension Voltage Drop Multifractal Spectrum Parabolic Approximation Growth Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    C.J. Allègre, E. Lewin: Earth Planet. Sci. Lett. 132, 1 (1995)Google Scholar
  2. 4.2
    B.B. Mandelbrot: J. Fluid Mech. 62, 231 (1974)CrossRefGoogle Scholar
  3. 4.3
    P. Meakin, H.E. Stanley, A. Coniglio, T.A. Witten: Phys. Rev. A 32, 2364 (1985)ADSCrossRefGoogle Scholar
  4. 4.4
    H.E. Stanley, P. Meakin: Nature 335, 405 (1988)ADSCrossRefGoogle Scholar
  5. 4.5
    L. de Arcangelis, S. Redner, A. Coniglio: Phys. Rev. B 31, 4725 (1985)ADSCrossRefGoogle Scholar
  6. 4.6
    J.G. Gao, I. Rubin: Electron. Lett. 36, 101 (2000)CrossRefGoogle Scholar
  7. 4.7
    B.B. Mandelbrot: J. Fluid Mech. 62, 331 (1976)ADSCrossRefGoogle Scholar
  8. 4.8
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman: Phys. Rev. A 33, 1141 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 4.9
    J. Feder: Fractals (Plenum, New York 1988)zbMATHGoogle Scholar
  10. 4.10
    B.B. Mandelbrot: Fractals and Multifractals: Noise, Turbulence and Galaxies (Springer, New York 1988)Google Scholar
  11. 4.11
    P. Meakin: Fractals, Scaling and Growth Far from Equilibrium (Cambridge University Press, Cambridge 1998)zbMATHGoogle Scholar
  12. 4.12
    D. Sornette: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools (Springer, Berlin 2000)zbMATHCrossRefGoogle Scholar
  13. 4.13
    J.F. Gouyet: Physics and Fractal Structures (Springer, New York 1996)Google Scholar
  14. 4.14
    U. Frisch: Turbulence (Cambridge University Press, Cambridge 1995)zbMATHGoogle Scholar
  15. 4.15
    C. Beck, F. Schlogl: Thermodynamics of Chaotic Systems (Cambridge University Press, Cambridge 1993)CrossRefGoogle Scholar
  16. 4.16
    T. Vicsek: Fractal Growth Phenomena, 2nd edn. (World Scientific, Singapore 1992)zbMATHCrossRefGoogle Scholar
  17. 4.17
    J.P. Bouchaud, M. Potters: Theory of Financial Risk (Cambridge University Press, Cambridge 1999)Google Scholar
  18. 4.18
    B.B. Mandelbrot: Multifractals and 1/f Noise (Springer, New York 1998)Google Scholar
  19. 4.19
    G. Paladin, A. Vulpiani: Phys. Rep. 156, 147 (1987)MathSciNetADSCrossRefGoogle Scholar
  20. 4.20
    L. de Arcangelis, S. Redner, A. Coniglio: Phys. Rev. B 34, 4656 (1986)ADSCrossRefGoogle Scholar
  21. 4.21
    A. Coniglio: Phys. Rev. Lett. 46, 250 (1982)ADSCrossRefGoogle Scholar
  22. 4.22
    G.A. Edgar: Integral, Probability, and Fractal Measures (Springer, New York 1997)Google Scholar
  23. 4.23
    J.D. Farmer, E. Ott, J.A. York: Physica 7D, 153 (1983)MathSciNetGoogle Scholar
  24. 4.24
    J. Balatoni, A. Renyi: Pub. Math. Inst. Hungarian Acad. Sc. 1, 9 (1956)zbMATHGoogle Scholar
  25. 4.25
    P. Grassberger, I. Procaccia: Phys. Rev. Lett. 50, 346 (1983)MathSciNetADSCrossRefGoogle Scholar
  26. 4.26
    A. Chhabra, R.V. Jesen: Phys. Rev. Lett. 62, 1327 (1989)MathSciNetADSCrossRefGoogle Scholar
  27. 4.27
    M.E. Cates, J.M. Deutsch: Phys. Rev. A 35, 4907 (1987)MathSciNetADSCrossRefGoogle Scholar
  28. 4.28
    M.E. Cates, T.A. Witten: Phys. Rev. A 35, 1809 (1987)MathSciNetADSCrossRefGoogle Scholar
  29. 4.29
    W. Pook, M. Janssen: Z. Phys. B 82, 295 (1991)ADSCrossRefGoogle Scholar
  30. 4.30
    M. Barthélémy, S.V. Buldyrev, S. Havlin, H.E. Stanley: Phys. Rev. E 61, R3283 (2000)ADSCrossRefGoogle Scholar
  31. 4.31
    T.A. Witten, L.M. Sander: Phys. Rev. Lett. 47, 1400 (1981)ADSCrossRefGoogle Scholar
  32. 4.32
    P. Meakin: Phys. Rep. 235, 189 (1993)ADSCrossRefGoogle Scholar
  33. 4.33
    Y. Hayakawa, S. Sato, M. Matsushita: Phys. Rev. A 36, 1963 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tsuneyoshi Nakayama
    • 1
  • Kousuke Yakubo
    • 1
  1. 1.Department of Applied Physics, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations