Percolating Networks as Random Fractals

  • Tsuneyoshi Nakayama
  • Kousuke Yakubo
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 140)


The theory of percolation was initiated in 1957 by Broadbent and Hammersley [3.1] in connection with the diffusion of gases through porous media. At that time Broadbent was a researcher at the British Coal Utilization Research Association working on the design of gas masks made of porous filters. He noticed that if pores are wide and well connected, the gas molecules penetrate deep into the filter. Otherwise the gas cannot pass through. He brought this problem to the mathematician Hammersley [3.2]. They developed the geometrical and probabilistic theory of percolation.


Fractal Dimension Correlation Length Critical Exponent Scaling Relation Cayley Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    S.R. Broadbent, J.M. Hammersley: Proc. Cambridge Philos. Soc. 53, 629 (1957)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 3.2
    J.M. Hammersley: Ann. Isr. Phys. Soc. 5, 47 (1983)MathSciNetGoogle Scholar
  3. 3.3
    A.L. Efros: Physics and Geometry of Disorder (Mir Publishers, Moscow 1986)Google Scholar
  4. 3.4
    H.E. Stanley: J. Phys. A 10, 121 (1977)CrossRefGoogle Scholar
  5. 3.5
    D. Stauffer, A. Aharony: Introduction to Percolation Theory, 2nd edn. (Taylor and Francis, London/Philadelphia, 1992)Google Scholar
  6. 3.6
    S.R. Broadbent: J. R. Stat. Soc. B 16, 68 (1954)Google Scholar
  7. 3.7
    M.P.M. den Nijs: J. Phys. A 12, 1857 (1979)ADSCrossRefGoogle Scholar
  8. 3.8
    B. Nienhuis, E.K. Riedel, M. Schick: J. Phys. A 13, 189 (1980)MathSciNetADSCrossRefGoogle Scholar
  9. 3.9
    R.B. Pearson: Phys. Rev. B 22, 2579 (1980)ADSCrossRefGoogle Scholar
  10. 3.10
    B. Nienhuis: J. Phys. A 15, 199 (1982)MathSciNetADSCrossRefGoogle Scholar
  11. 3.11
    D.S. Gaunt, M.F. Sykes: J. Phys. A 16, 783 (1983)MathSciNetADSCrossRefGoogle Scholar
  12. 3.12
    J. Adler, A. Aharony, A.B. Harris: Phys. Rev. B 30, 2832 (1984)ADSCrossRefGoogle Scholar
  13. 3.13
    N. Jan, D.C. Hong, H.E. Stanley: J. Phys. A 18, L935 (1985)ADSCrossRefGoogle Scholar
  14. 3.14
    J. Adler, Y. Meir, A. Aharony, A.B. Harris: Phys. Rev. B 41, 9183 (1990)ADSCrossRefGoogle Scholar
  15. 3.15
    E. Stoll, M. Kolb, E. Courtens: Phys. Rev. Lett. 68 2472 (1992)ADSCrossRefGoogle Scholar
  16. 3.16
    H.E. Stanley: J. Stat. Phys. 36, 843 (1984)ADSCrossRefGoogle Scholar
  17. 3.17
    H.J. Herrmann, H.E. Stanley: J. Phys. A 21, L829 (1988)MathSciNetADSCrossRefGoogle Scholar
  18. 3.18
    A.S. Skal, B.I. Shklovskii: Sov. Phys. Semicond. 8, 1029 (1975)Google Scholar
  19. 3.19
    P.G. de Gennes: J. Phys. (Paris) Lett. 37, L1 (1976)ADSCrossRefGoogle Scholar
  20. 3.20
    A. Coniglio: J. Phys. A 15, 3829 (1982)MathSciNetADSCrossRefGoogle Scholar
  21. 3.21
    A. Coniglio: Phys. Rev. Lett. 46, 250 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tsuneyoshi Nakayama
    • 1
  • Kousuke Yakubo
    • 1
  1. 1.Department of Applied Physics, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations