Advertisement

Multifractals in the Anderson Transition

  • Tsuneyoshi Nakayama
  • Kousuke Yakubo
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 140)

Abstract

In Chap. 9, we showed the partial similarity between the Anderson transition and the thermal or percolation transition. Critical properties near/at the thermal phase transition or the percolation transition are related to the fractality at the critical point. This is because the local order parameter of such a transition distributes in a fractal manner. It is natural to suppose that the fractality is relevant in the case of the Anderson transition as well. However, it is not easy to find an appropriate order parameter for the Anderson transition itself. What kinds of distribution are fractal at the Anderson transition? The answer is the squared amplitudes of the wavefunction at the transition point and the energy distribution of the spectral measure. These distributions are actually multifractal rather than conventional fractals. Although the multifractalities of the critical wavefunction and the spectral measure should generally be independent, they are closely related in the case of the Anderson transition. This is because the one-parameter scaling hypothesis holds for the Anderson transition.

Keywords

Landau Level Localization Length Multifractal Spectrum Lower Landau Level Multifractal Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 10.1
    H. Aoki: J. Phys. C 13, 3369 (1980)ADSCrossRefGoogle Scholar
  2. 10.2
    H. Aoki: J. Phys. C 16, L205 (1983)ADSCrossRefGoogle Scholar
  3. 10.3
    F. Wegner: Z. Phys. B 36, 209 (1980)ADSCrossRefGoogle Scholar
  4. 10.4
    See, for example, M. Janssen: Int. J. Mod. Phys. B 8, 943 (1994)ADSCrossRefGoogle Scholar
  5. 10.5
    W. Pook, M. Janssen: Z. Phys. B 82, 295 (1991)ADSCrossRefGoogle Scholar
  6. 10.6
    T. Terao, T. Nakayama, H. Aoki: Phys. Rev. B 54, 10350 (1996)ADSCrossRefGoogle Scholar
  7. 10.7
    K. Pracz, M. Janssen, P. Freche: J. Phys. Condens. Matter 8, 7147 (1996)ADSCrossRefGoogle Scholar
  8. 10.8
    C. Castellani, L. Peliti: J. Phys. A 19, L429 (1986)ADSCrossRefGoogle Scholar
  9. 10.9
    V.I. Fal’ko, K.B. Efetov: Phys. Rev. B 52, 17413 (1995)ADSCrossRefGoogle Scholar
  10. 10.10
    I.E. Smolyarenko, B.L. Altshuler: Phys. Rev. B 55, 10451 (1997)ADSCrossRefGoogle Scholar
  11. 10.11
    A.W.W. Ludwig, M.P.A. Fisher, R. Shanker, G. Grinstein: Phys. Rev. B 50, 7526 (1994)ADSCrossRefGoogle Scholar
  12. 10.12
    D. V. Khveshchenko, A.G. Yashenkin, I. V. Gomyi: Phys. Rev. Lett. 86, 4668 (2001)ADSCrossRefGoogle Scholar
  13. 10.13
    T.K. Ng: Phys. Rev. Lett. 82, 3504 (1999)ADSCrossRefGoogle Scholar
  14. 10.14
    H.E. Castillo, C. Chamon, E. Fradkin, P.M. Goldbart, C. Mudry: Phys. Rev. B 56, 10668 (1997)ADSCrossRefGoogle Scholar
  15. 10.15
    T. Fujiwara, M. Kohmoto, T. Tokihiro: Phys. Rev. B 40, 7413 (1989)ADSCrossRefGoogle Scholar
  16. 10.16
    D. Domínguez, C. Wiecko, J.V. José: Phys. Rev. B 45, 13919 (1992)ADSCrossRefGoogle Scholar
  17. 10.17
    D.R. Hofstadter: Phys. Rev. B 14, 2239 (1976)ADSCrossRefGoogle Scholar
  18. 10.18
    C. Tang, M. Kohmoto: Phys. Rev. B 34, 2041 (1986)ADSCrossRefGoogle Scholar
  19. 10.19
    R. Ketzmerick, G. Petschel, T. Geisel: Phys. Rev. Lett. 69, 695 (1992)ADSCrossRefGoogle Scholar
  20. 10.20
    B. Huckestein, L. Schweitzer: Phys. Rev. Lett. 72, 713 (1994)ADSCrossRefGoogle Scholar
  21. 10.21
    B. Huckestein, R. Klesse: Phys. Rev. B 55, R7303 (1997)ADSCrossRefGoogle Scholar
  22. 10.22
    M. Janssen: Phys. Rep. 295, 1 (1998)ADSCrossRefGoogle Scholar
  23. 10.23
    J.T. Chalker: Physica 167A, 253 (1990)ADSGoogle Scholar
  24. 10.24
    T. Brandes, B. Huckestein, L. Schweitzer: Ann. Phys. (Leipzig), 5, 633 (1996)ADSGoogle Scholar
  25. 10.25
    J. Cardy: Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge 1996)Google Scholar
  26. 10.26
    J. Cardy: J. Phys. A 18, L757 (1985)MathSciNetADSCrossRefGoogle Scholar
  27. 10.27
    Y. Deng, H.W.J. Blöte: Phys. Rev. Lett. 88, 190602 (2002)MathSciNetADSCrossRefGoogle Scholar
  28. 10.28
    B. Huckestein: Rev. Mod. Phys. 67, 357 (1995)ADSCrossRefGoogle Scholar
  29. 10.29
    D.H. Lee, Z. Wang, S. Kivelson: Phys. Rev. Lett. 70, 4130 (1993)ADSCrossRefGoogle Scholar
  30. 10.30
    K. Yakubo: Phys. Rev. B 62, 16756 (2000)ADSCrossRefGoogle Scholar
  31. 10.31
    B.I. Halperin, P.A. Lee, N. Read: Phys. Rev. B 47, 7312 (1993)ADSCrossRefGoogle Scholar
  32. 10.32
    J.K. Jain: Phys. Rev. Lett. 63, 199 (1989)ADSCrossRefGoogle Scholar
  33. 10.33
    B. Huckestein: Phys. Rev. B 53, 3650 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tsuneyoshi Nakayama
    • 1
  • Kousuke Yakubo
    • 1
  1. 1.Department of Applied Physics, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations