• Tsuneyoshi Nakayama
  • Kousuke Yakubo
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 140)


Fractals provide a simple description of complex structures in nature and are currently used in almost every branch of condensed matter physics. Mandelbrot gave a simple definition of the term fractal: a fractal is a shape made of parts similar to the whole in some way [1.1]. The idea of the fractal is based on the self-similarity of complex structures [1.2,1.3].


Fractal Dimension Energy Spectrum Spin Wave Fractal Network Fractal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    J. Feder: Fractals (Plenum, New York 1988)zbMATHGoogle Scholar
  2. 1.2
    B.B. Mandelbrot: Fractals: Form, Chance and Dimension (Freeman, San Francisco 1977)zbMATHGoogle Scholar
  3. 1.3
    B.B. Mandelbrot: The Fractal Geometry of Nature (Freeman, San Francisco 1982)zbMATHGoogle Scholar
  4. 1.4
    L.P. Kadanoff: Phase Transitions and Critical Phenomena Vol. 5A, ed. by C. Domb and M.S. Green (Academic Press, New York 1976)Google Scholar
  5. 1.5
    D. Avnir (Ed.): The Fractal Approach to Heterogeneous Chemistry (Wiley, Chichester 1989)Google Scholar
  6. 1.6
    H. Takayasu: Fractals in the Physical Sciences (Manchester University Press, Manchester 1990)zbMATHGoogle Scholar
  7. 1.7
    A. Bunde, S. Havlin (Eds.): Fractals and Diordered Systems (Springer-Verlag, Berlin 1991)Google Scholar
  8. 1.8
    T. Vicsek: Fractal Growth Phenomena, 2nd edn. (World Scientific, Singapore 1993)Google Scholar
  9. 1.9
    A. Bunde, S. Havlin (Eds.): Fractals in Science (Springer-Verlag, Berlin 1994)zbMATHGoogle Scholar
  10. 1.10
    D. Stauffer, H.E. Stanley: From Newton to Mandelbrot: A Primer in Theoretical Physics, 2nd edn. (Springer-Verlag, Berlin 1995)Google Scholar
  11. 1.11
    A.-L. Barabaási, H.E. Stanley: Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge 1995)CrossRefGoogle Scholar
  12. 1.12
    P.G. de Gennes: La Recherche 7, 919 (1976)Google Scholar
  13. 1.13
    Y. Gefen, A. Aharony, A. Alexander: Phys. Rev. Lett. 50, 77 (1983)ADSCrossRefGoogle Scholar
  14. 1.14
    S. Alexander, R. Orbach: J. Phys. (Paris) Lett. 43, L625 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tsuneyoshi Nakayama
    • 1
  • Kousuke Yakubo
    • 1
  1. 1.Department of Applied Physics, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations