Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 25))

Abstract

The present paper reviews several methods for a posteriori error estimation of finite element approximations. The first part (Section 1) is concerned with global error estimators which provide for estimates and bounds in global norms (so-called energy norms). In particular, explicit and implicit residual methods are described in detail. The second part of the paper (Section 2) deals with a more recent technique, in which the numerical error in finite element approximations of general problems are estimated in terms of quantities of interest. The concept of goal-oriented adaptivity which embodies mesh adaptation procedures designed to control error in specific quantities is also described. Both global and goal-oriented error estimation methods are illustrated on model problems based on the Poisson, convection-diffusion, Stokes and steady-state Navier-Stokes equations. The third part of the paper (Section 3) presents preliminary work on a posteriori error estimation for time-dependent problems, namely the parabolic heat equation and the incompressible Navier-Stokes equations. The methods deal with estimating the approximation errors due to the discretization in space using either explicit or implicit error estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, M., Kelly, D. W., Sloan, I. H., and Wang, S. L. Postprocessing with computable error bounds for the finite element approximation of a nonlinear heat conduction problem. IMA J. Numer. Anal.17 (1997), 547–561.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M., and Oden, J. T. A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65, 1 (1993), 23–50.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth, M., and Oden, J. T. A posteriori error estimation in finite element analysis. Comp. Meth. in Appl. Mech. and Eng. 142, 1–2 (1997), 1–88.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., and Oden, J. T. A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, 2000.

    Book  MATH  Google Scholar 

  5. Babuska, I., and Miller, A. The post-processing approach in the finite element method — Part 1: Calculation of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Methods Eng.20 (1984), 1085–1109.

    Article  MATH  Google Scholar 

  6. Babuška, I., and Miller, A. The post-processing approach in the finite element method — Part 2: The calculation of stress intensity factors. Int. J. Nurner. Methods Eng.20 (1984), 1111–1129.

    Article  MATH  Google Scholar 

  7. Babuška, I., and Miller, A. The post-processing approach in the finite element method — Part 3: A-posteriori error estimates and adaptive mesh selection. Int. J.Nurner. Methods Eng.20 (1984), 2311–2324.

    Article  MATH  Google Scholar 

  8. Babuška, I., and Miller, A. A feedback finite element method with a posteriori error estimation Part 1. Comp. Meth. in Appl. Mech. and Eng.61 (1987), 1–40.

    Article  MATH  Google Scholar 

  9. Babuška, I., and Rheinboldt, W. A posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng.12 (1978), 1597–1615.

    Article  MATH  Google Scholar 

  10. Babuška, I., and Rheinboldt, W. On the reliability and optimality of the finite element method. Computers & Structures10 (1979), 87–94.

    Article  MATH  Google Scholar 

  11. Babuška, I., and Strouboulis, T. The Finite Element Method and its reliability. Oxford University Press, 2001.

    Google Scholar 

  12. Babuška, I., Strouboulis, T., and Gangaraj, S. K. Guaranteed computable bounds for the exact error in the finite element solution Part I: Onedimensional model problem. Comp. Meth. in Appl. Mech. and Eng.176 (1999), 51–79.

    Article  MATH  Google Scholar 

  13. Babuška, I., Strouboulis, T., Upadhyay, C. S., and Gangaraj, S. K. A posteriori estimation and adaptive control of the pollution error in the hversion of the finite element method. Int. J. Numer. Methods Eng.38 (1995), 4207–4235.

    Article  MATH  Google Scholar 

  14. Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., and Copps, K. Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng.37 (1994), 1073–1123.

    Article  MATH  Google Scholar 

  15. Bank, R. E., and Weiser, A. Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44, 170 (1985), 283–301.

    Article  MathSciNet  MATH  Google Scholar 

  16. Becker, R., and Rannacher, R. A feedback approach to error control in finite elements methods: Basic analysis and examples. East- West J. Numer. Math. 4 (1996), 237–264.

    MathSciNet  MATH  Google Scholar 

  17. Becker, R., and Rannacher, R. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica (2001). To appear.

    Google Scholar 

  18. Bernardi, C., and Girault, V. A local regularisation operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal.35, 5 (1998), 1893–1916.

    Article  MathSciNet  MATH  Google Scholar 

  19. Cao, T., Kelly, D. W., and Sloan, I. H. Local error bounds for postprocessed finite element calculations. Int. J. Numer. Methods Eng.45 (1999), 1085–1098.

    Article  MathSciNet  MATH  Google Scholar 

  20. Carstensen, C., and Funken, S. A. Fully reliable localized error control in the FEM. SIAM J. Sci. Comput.21, 4 (2000), 1465–1484.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chilton, L., and Suri, M. On the selection of a locking-free hp element for elasticity problems. Int. J. Numer. Methods Eng.40 (1997), 2045–2062.

    Article  MathSciNet  MATH  Google Scholar 

  22. De Almeida, V. F., and Derby, J. J. Construction of solution curves for large two-dimensional problems of steady-state flows of incompressible fluids. SIAM J. Sci. Comput.22, 1 (1999), 285–311.

    Article  Google Scholar 

  23. Doering, C. R., and Gibbon, J. D. Applied Analysis of the Navier-Stokes Equations. Cambridge University Press, 1995.

    Book  MATH  Google Scholar 

  24. Eckmann, J.-P., and Ruelle, D. Ergodic theory of chaos and strange attractors. Review of Modern Physics57 (1985), 617–656.

    Article  MathSciNet  Google Scholar 

  25. Estep, D. J., Larson, M. G., and Williams, R. D. Estimating the Error of Numerical Solutions of Systems of Reaction-Difffusion Equations. No. 696 in Memoirs of the American Mathematical Society. AMS, Providence, Rhode Island, 2000.

    Google Scholar 

  26. Fortin, A., Fortin, M., and Gervais, J. A numerical simulation of the transition to turbulence in a two-dimensional flow. J. Comp. Phys.70 (1987), 295–310.

    Article  MATH  Google Scholar 

  27. Fragos, V. P., Psychoudaki, S. P., and Malamataris, N. A. Computeraided analysis of flow past a surface-mounted obstacle. Int. J. Numer. Methods Fluids25 (1997), 495–512.

    Article  MATH  Google Scholar 

  28. Gartland, Jr., E. C. Computable pointwise error bounds and the ritz method in one dimension. SIAM J. Numer. Anal.21, 1 (1984), 84–100.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ghia, K. N., Osswald, G. A., and Ghia, U. Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil. In Supercomputers and fluid dynamics: proceedings of the First Nobeyama Workshop, September 3–6, 1985 (1986), K. Kuwahara, R. Mendez, and S. A. Orszag, Eds., no. 24 in Lecture Notes in Engineering, Springer-Verlag, pp. 118–132.

    Google Scholar 

  30. Girault, V., and Raviart, P.-A. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, 1986.

    Book  MATH  Google Scholar 

  31. Gunzburger, M. D. Finite element methods for viscous incompressible flows: a guide to theory, practice and algorithms. Academic Press, 1989.

    MATH  Google Scholar 

  32. Huerta, A., Díez, P., Rodríguez-Ferran, A., and Pijaudier-Cabot, G. Error estimation and adaptive finite element analysis of softening solids. In Advances in Adaptive Computational Methods in Mechanics (1998), P. Ladevèze and J. T. Oden, Eds., Elsevier, Amsterdam, pp. 333–347.

    Chapter  Google Scholar 

  33. Jin, H., and Prudhomme, S. A posteriori error estimation of finite element solutions of the Navier-Stokes equations. Comp. Meth. in Appl. Mech. and Eng.159 (1998), 19–48.

    Article  MathSciNet  MATH  Google Scholar 

  34. Johnson, R., Rannacher, R., and Boman, M. Numerics and hydrodynamic stability: Towards error control in CFD. SIAM J. Numer. Anal.32, 4 (1995), 1058–1079.

    Article  MathSciNet  MATH  Google Scholar 

  35. Ladevèze, P., and Leguillon, D. Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal.20 (1983), 485–509.

    Article  MathSciNet  MATH  Google Scholar 

  36. Ladevèze, P., and Maunder, E. A. W. A general method for recovering equilibrating element tractions. Comp. Meth. in Appl. Mech. and Eng.137 (1996), 111–151.

    Article  MATH  Google Scholar 

  37. Ladevèze, P., and Pelle, J.-P. La maîtrise du calcul en mécanique linéaire et non linéaire. Hermès, 2001.

    MATH  Google Scholar 

  38. Morin, P., Nochetto, R. H., and Siebert, K. G. Local problems on stars: A posteriori error estimators, convergence, and performance. Website: http://www.math.umd.edu/~pmorin/ (2001).

    Google Scholar 

  39. Niu, Q., and Shephard, M. S. Superconvergent extraction techniques for finite element analysis. Int. J. Numer. Methods Eng.36 (1993), 811–836.

    Article  MathSciNet  MATH  Google Scholar 

  40. Niu, Q., and Shephard, M. S. Superconvergent boundary stress extraction and some experiments with adaptive pointwise error control. Int. J. Numer. Methods Eng.37 (1994), 877–891.

    Article  MathSciNet  MATH  Google Scholar 

  41. Oden, J. T., Demkowicz, L., Westermann, T., and Rachowicz, W. Toward a universal h-p adaptive finite element strategy. Part 2. A posteriori error estimates. Comp. Meth. in Appl. Mech. and Eng.77 (1989), 79–120.

    Article  MathSciNet  MATH  Google Scholar 

  42. Oden, J. T., and Prudhomme, S. A technique for a posteriori error estimation of h-p approximations of the Stokes equations. In Advances in Adaptive Computational Methods in Mechanics (1998), P. Ladevèze and J. T. Oden, Eds., Elsevier, Amsterdam, pp. 43–63.

    Chapter  Google Scholar 

  43. Oden, J. T., and Prudhomme, S. New appoaches to error estimation and adaptivity for the Stokes and Oseen equations. Int. J. Numer. Methods Fluids31 (1999), 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  44. Oden, J. T., and Prudhomme, S. Goal-oriented error estimation and adaptivity for the finite element method. Computers Math. Applic. 41, 5–6 (2001), 735–756.

    Article  MathSciNet  Google Scholar 

  45. Paraschivoiu, M., and Patera, A. T. A hierarchical duality approach to bounds for the outputs of partial differential equations. Comp. Meth. in Appl. Mech. and Eng.158 (1998), 389–407.

    Article  MathSciNet  MATH  Google Scholar 

  46. Paraschivoiu, M., and Patera, A. T. A posteriori bounds for linear functional outputs of Crouzeix-Raviart finite element discretizations of the incompressible Stokes problem. Int. J. Numer. Methods Fluids32, 7 (2000), 823–849.

    Article  MathSciNet  MATH  Google Scholar 

  47. Paraschivoiu, M., Peraire, J., and Patera, A. T. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comp. Meth. in Appl. Mech. and Eng.150 (1997), 289–312.

    Article  MathSciNet  MATH  Google Scholar 

  48. Peraire, J., and Patera, A. T. Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement. In Advances in Adaptive Computational Methods in Mechanics (1998), P. Ladevèze and J. T. Oden, Eds., Elsevier, Amsterdam, pp. 199–215.

    Chapter  Google Scholar 

  49. Prudhomme, S. Adaptive finite element simulation of a supersonic underexpanded jet. Master’s thesis, University of Virginia, 1992.

    Google Scholar 

  50. Prudhomme, S. Adaptive Control of Error and Stability of h-p Approximations of the Transient Navier-Stokes Equations. PhD thesis, The University of Texas at Austin, 1999.

    Google Scholar 

  51. Prudhomme, S., and Oden, J. T. On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors. Comp. Meth. in Appl. Mech. and Eng.176 (1999), 313–331.

    Article  MathSciNet  MATH  Google Scholar 

  52. Prudhomme, S., and Oden, J. T. Numerical stability and error analysis for the incompressible Navier-Stokes equations. Communications in Numerical Methods in Engineering (Submitted).

    Google Scholar 

  53. Pulliam, T. H., and Vastano, J. A. Transition to chaos in an open unforced 2D flow. J. Comp. Phys.105 (1993), 133–149.

    Article  MathSciNet  MATH  Google Scholar 

  54. Schwab, C. P- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, New York, 1998.

    MATH  Google Scholar 

  55. Stenberg, R., and Suri, M. Mixed hp finite element methods for problems in elasticity and Stokes flow. Numer. Math.72 (1996), 367–389.

    Article  MathSciNet  MATH  Google Scholar 

  56. Strouboulis, T., Babuska, I., Datta, D. K., Copps, K., and Gangaraj, S. K. A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor. Comp. Meth. in Appl. Mech. and Eng.181 (2000), 261–294.

    Article  MathSciNet  MATH  Google Scholar 

  57. Strouboulis, T., Babuska, I., and Gangaraj, S. K. Guaranteed computable bounds for the exact error in the finite element solution — Part II: bounds for the energy norm of the error in two dimensions. Int. J. Numer. Methods Eng.47 (2000), 427–475.

    Article  MathSciNet  MATH  Google Scholar 

  58. Szabó, B., and Babuska, I. Finite Element Analysis. John Wiley & Sons, 1991.

    MATH  Google Scholar 

  59. Temam, R. Navier-Stokes Equations: Theory and Numerical Analysis, 2nd ed. North Holland, 1984.

    MATH  Google Scholar 

  60. Verfürth, R. A Review of A Posteriori Error Estimation and Adaptive Meshrefinement Techniques. Wiley-Teubner, Stuttgart, 1996.

    Google Scholar 

  61. Wang, S., Sloan, I. H., and Kelly, D. W. Computable error bounds for pointwise derivatives of a neumann problem. IMA J. Numer. Anal.18 (1998), 251–271.

    Article  MathSciNet  MATH  Google Scholar 

  62. Yang, J. D., Kelly, D. W., and Isles, J. D. A posteriori pointwise upper bound error estimates in the finite element method. Int. J. Numer. Methods Eng.36 (1993), 1279–1298.

    Article  MathSciNet  MATH  Google Scholar 

  63. Zienkiewicz, O. C., and Zhu, J. Z. A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng.24 (1987), 337–357.

    Article  MathSciNet  MATH  Google Scholar 

  64. Zienkiewicz, O. C., and Zhu, J. Z. The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng.33 (1992), 1331–1364.

    Article  MathSciNet  MATH  Google Scholar 

  65. Zienkiewicz, O. C., and Zhu, J. Z. The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int. J. Numer. Methods Eng.33 (1992), 1365–1382.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prudhomme, S., Oden, J.T. (2003). Computable Error Estimators and Adaptive Techniques for Fluid Flow Problems. In: Barth, T.J., Deconinck, H. (eds) Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05189-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05189-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07841-5

  • Online ISBN: 978-3-662-05189-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics